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Abstract

After a brief review on the basic notions and the principal results concerning the Jacobi manifolds,
the relationship between homogeneous Poisson manifolds and conformal Jacobi manifolds, and
also the compatible Jacobi manifolds, we give a generalization of some of these results needed
for the contents of this paper. We introduce the notion of Jacobi—Nijenhuis structure and we study
the relation between Jacobi—Nijenhuis manifolds and homogeneous Poisson—Nijenhuis manifolds.
We present a local classification of homogeneous Poisson—Nijenhuis manifolds and we establish
some local models of Jacobi—Nijenhuis manifolds.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The notion ofJacobi—Nijenhuis structurevas introduced if17] by Marrero et al. and
includes, as a particular case, thatndak Poisson—Nijenhuis structupeesented ir18].
In this paper we propose a stricter definition of this notion, which generalizes in a natural
manner that oPoisson—Nijenhuis structumetroduced by Magri and Moro§b,14], in order
to study the completely integrable hamiltonian systems. The aim of this paper is to evidence
some aspects of the local geometry of this new structure, hoping that it will play a part as
important as Poisson, Jacobi and Poisson—Nijenhuis structures in the study of integrable
systems.

The paper is divided into three parts.
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Paragraphs 1-3 &ection ASections 2.1-2)mare devoted to the review and some com-
plements of the essential definitions and results on Jacobi manifolds, conformal Jacobi
manifolds, homogeneous Poisson manifolds and compatible Jacobi manifolds. In para-
graph 4 we introduce the notion dfijenhuis operatorwhile in paragraph 5 we define
the notions ofJacobi—Nijenhuis structureconformal Jacobi—Nijenhuis structusnd ho-
mogeneous Poisson—Nijenhuis strucfumad we establish a particular relation between
Jacobi-Nijenhuis manifolds and homogeneous Poisson—Nijenhuis manifolds. Precisely,
we prove that an one-codimensional submanifold of a homogeneous Poisson—Nijenhuis
manifold, which is transverse to the homothety vector field, possesses an induced Jacobi—
Nijenhuis structure (cfProposition 2.1p, and that any Jacobi—Nijenhuis manifold can be
obtained in this way (cfProposition 2.15

In Section 3(Sections 3.1-3)4 using the results dR1,23] concerning the local mod-
els of Poisson—Nijenhuis structures, we present a local classification of homogeneous
Poisson—Nijenhuis manifolds.

Finally, Section 4Sections 4.1 and 4) 2lescribes some local models of Jacobi—Nijenhuis
manifolds. On the neighbourhood of a generic point of a differentiable Jacobi—Nijenhuis
manifold, we establish the existence of a local coordinates system in which the coeffici-
ents of the tensor fields that define the Jacobi—Nijenhuis structure are polynomials of degree
less or equal to 3.

Notation In this paper, we denote ly aC>°-differentiable manifold of finite dimension,

TM and T*M, respectively, the tangent and cotangent bundle a¥eilC> (M, R) the
space of realC*-differentiable functions o, 2X(M), k € N, the space of exterior
differentiablek-forms onM, andV* (M), k € N, the space of skew-symmetric contravariant
k-tensor fields on.

For the Schouten bracket (§£0,25]) and the interior product of a form with a multivector
field, we use the convention of sign indicated by Koszul [@&fL6]).

2. Part |
2.1. Jacobi manifolds

Let M be aC*°-differentiable manifold of finite dimension. We considerMdm bivector
field A and a vector field& which define orC*°(M, R) the internal composition law:

{f. g} = AWdf.dg) + (fdg—gdf, E), f, g€ C™(M,R). 1)
Itis bilinear, skew-symmetric and it verifies, fordllg, h € C*°(M, R), the Jacobiidentity:
{f {g. h}}+{g. {h, fI}+{h.{f. g}} =0
if and only if
[A,A]l=-2EAA and [E, A] =0, (2)

where [, ] denotes the Schouten bracket. When conditi(@)sare verified, we say that
the pair(A, E) defines alacobi structureon M and that(M, A, E) is aJacobi manifold
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The bracketl) is called theJacobi bracketind the spacéC*>° (M, R), {, }) is alocal Lie
algebra in the sense of Kirillov (cf3,5]).
In the particular case whetg identically vanishes oM, conditions(2) reduce to

[A’ A] = 0,

i.e. in this caseA endowsM with a Poisson structure

We denote byA” : T*M — TMand(A, E)* : T*M x R — TM x R the vector bundle
maps associated, respectively, wittand(A, E), i.e. for all sections, 8 of T*M and for
all f e C®*(M, R),

(B, A*(@)) = A, B) ®)
and
(A, EY¥(a, f) = (A*@) +TE, —(a, E)). 4)

These maps can be seen, respectively, as homomorphis@ @#, R)-modules;A* :
QY M) > VM) and(A, EY* : QY (M) x C®°(M, R) - VY(M) x C®°(M, R).
Finally, with any functionf € C*°(M, R), we associate the vector field

X, = A*(df) +fE (5)

which is called thénamiltonian vector field associated wigh

The image ofA” and the vector fiel& define a completely integrable distribution &b
called thecharacteristic distribution of M, A, E), (cf.[1,3,5)). This distribution defines a
Stefan foliation ofM whose leaves, which are generated by the hamiltonian vector fields
(5), are called theharacteristic leaves of the Jacobi structyré, E) of M.

If, at every point ofM, the dimension of the characteristic leaf(of, E) through that
pointis equal to the dimension &f, the Jacobi manifoldM, A, E) is said to baransitive
According to the parity of the dimension @f, there are two kinds of transitive Jacobi
manifolds:

1. If M has odd dimensiorA, E) is defined by a contact one-form (¢2,11]).
2. If M has even dimensioi/, E) is defined by a locally conformal symplectic structure
(cf. [2,11]).

The characteristic leaves @i, E) are themselves transitive Jacobi manifolds[@gfL1]).
Given a Jacobi structurel, E) on M, the space&21(M) x C*®(M, R) is endowed with
a Lie algebra structure whose bracket

(1Y M) x C®°(M, R)? - QY (M) x C®(M, R) (6)
is defined, for all, f), (B, g) € 2L(M) x C®(M, R), by

{(a, [), (B, &)} == (v, h), (7)
where
y = LA#(a)ﬁ - LA#(f;)Ol —d(A(a, B)) + ﬂ-Eﬁ —0glga —ig(a A B), (8)

h:=—A(a, B) + A(a, dg) — A(B, df) + (fdg— gdf, E), 9)
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(L denotes the Lie derivative operator) (pf]). When E identically vanishes o/, i.e.
A is a Poisson tensor o, the projection of6) on £21(M) coincides with the bracket
associated witm that endows this space with a Lie algebra structure/§c2.7]).

Leta € C*(M, R) be a function that never vanishes dh and{, }* : C®°(M, R) x
C®(M, R) — C°°(M, R) a new internal composition law o6*° (M, R), bilinear and
skew-symmetric, given, for each paif, g) € C®°(M, R) x C*(M, R), by

1
{f. g} = E{af, ag}. (10)

This law endows the spac&® (M, R) with a new Jacobi bracket that defines a new Jacobi
structure(A4, E4) on M, which is said to ba-conformalto the initially given one. The
structureg A, E) and(A¢, EY) are said to beonformally equivalentOne has

A =aA and E*= A*(da) +aE (12)

The equivalence class of the Jacobi structuredfothat are conformally equivalent to a
given Jacobi structure is called thenformal Jacobi structure of M

Let (M3, A1, E1) and (M2, Ao, E2) be two Jacobi manifolds angl : My, — M> a
differentiable map. 1fA; and E1 are projectable by on M, and their projections are,
respectivelyAs andEy, i.e.¢, A1 = Az andg,E1 = E2, theng : M1 — M> is said to be
aJacobi morphisnor aJacobi mapWheng : My — M5 is a diffeomorphism, the Jacobi
structureg A1, E1) and(A», E») are said to bequivalent

Amap¢ : M1 — M>is called ara-conformal Jacobi maifthere exists: € C*° (M1, R)
that never vanishes oWy such thatp : (M, Af, Ef) — (M, A2, E>) is a Jacobi map.

For a more detailed exposition of the essential properties of Jacobi manifol{is] sk,

2.2. Homogeneous Poisson manifolds and conformal Jacobi manifolds

In this paragraph, we present and we complete some results, needed in the sequel, due
to Lichnerowicz [11,12]), and to Dazord et al[Z]), concerning the homogeneous Poisson
manifolds and the conformal Jacobi manifolds.

Definition 2.1. Ahomogeneous Poisson manifgld, A, T') is a Poisson manifoltM, A)
with a vector fieldT on M, called the homothety vector field, such that

LrA=[T, Al = —A.

Proposition 2.1 ([2]). Let(M, A, T) be a homogeneous Poisson manifold aha sub-
manifold of M, of codimensior, transverse to the homothety vector figldThen X' has
an induced Jacobi structurel 5, E x) characterized by one of the following properties

1. For any pair (f, g) of homogeneous functions of degfewiith respect tor', defined
on an open subse&? of M, the Jacobi bracket of andg, restricted toX' N O, is the
restriction to X’ N O of the Poisson bracket gf andg.

2. Letw : U — X be the projection or¥' of a tubular neighbourhood of X in M such
that, for anyx € ¥, = ~1(x) is a connected arc of the integral curve Bfthrough.x.
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Leta be a function orU, equal tol on X and homogeneous of degrevith respect to
T. Then the projectionr is ana-conformal Jacobi map

Of course, the characteristic leaves of the Jacobi stru¢tige E ) on X are (at least
locally) the projections ort, parallel to the integral curves @f, of the symplectic leaves
of (M, A). Since these last ones are all of even dimension, one has:

1. Aleaf of (X, Ay, Ex) has even dimension if and only1f is not tangent to the corre-
sponding leaf of M, A). Then, the restriction aof : U — X to this symplectic leaf of
(M, A) is alocal diffeomorphism of this leaf @i\, A) onto the corresponding leaf of
(¥, Az, Ex).

2. Aleafof(X, Ay, Ey) has odd dimension if and onlyif is tangent to the corresponding
leaf of (M, A). Then, the dimension of this leaf 6F', Ay, Ex) is lower one unity than
the dimension of the corresponding leaf(d1, A).

In order to determine, in practice, the péiry, E5) we do as follows: (i) we compute the
functiona, equal to 1 on¥’ and homogeneous of degree 1 with respe@t.toe. Lya = a;
(ii) we compute the tensor fieldd* and E¢ that define, on a tubular neighbourhotid
of X in M, thea-conformal Jacobi structure to its Poisson structure; (iii) we denote by
7 : U — X the projection ofU on X, parallel to the integral curves df, and we
projectA? andE“ on X' by ir. Sincer is a Jacobi map afU, A%, E*) onto(X, Ay, Ey),
we have

Ax =m, A% and Ex =, E®. (12)

Notice that when a Poisson manifalgif, A) possesses a homothety vector figld.e.
Lt A = —A, this one is not unique. Each vector field of type+ X, whereX is an
infinitesimal Poisson automorphismafi.e.Lx A = 0, is also a homothety vector field of
A. Let X be an one-codimensional submanifoldwftransverse to two different homothety
vector fields ofA. The influence of the choice of a homothety vector fielddf A) on the
Jacobi structure induced ani by the homogeneous Poisson structuraodvill be studied
next.

Lemma2.l. Let(M, A, T') be ahomogeneous Poisson manifddan one-codimensional
submanifold ofM transverse to the homothety vector figldand (Ayx, Ex) the Jacobi
structure onX’ induced by the homogeneous Poisson struatureT ) of M. Then a vector
field T/ on M is a homothety vector field of if and only if

T'= X +hT,
whereX is a vector field tangent t&' and# is a differentiable function such that
[X,As]+[X,. TINEs —hAs = —Agx, (13)

[X, EE]—I-[h,A)_‘;]—(h—F(dh, THEyx =—Ey. (14)

Proof. Let p be a point ofX such thatT'(p) # 0 andX is transverse t@ at p. We may
suppose, restricting’ if needed, that there exists an open neighbourhgoaf p in M
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which can be identified with the produgt x I of the submanifold~ and an open interval

I of R containing 0. Therefore} is identified withX x {0} and T, restricted toU/, with
the vector field whose projections anand! are, respectively, the zero vector field and the
constant vector field equal to 1, i.etifs the canonical coordinate dn 7 = d/dz. Then,
from Eqgs. (11) and (12)it follows that

1
Aly = ;(Az-i-T/\E):), (15)

wherea is the homogeneous function of degree 1 with respett ttefined oV = X' x I,
whose restriction t& is equal to 1, i.ea(x, ) = ¢'. Also, any vector field onU can be
written as

T' = X + hT,

whereX is a vector field tangent t& and# is a differentiable function ol. It is easy to
check thatT’ is a homothety vector field of if and only if X andh satisfyEgs. (13) and
(14). 0

Remark 2.1. Obviously,T’ is transverse t& at p if and only if 2(p) # 0. In this case,
we may suppose, restrictirig if needed, thak never vanishes ofl.

Lemma 2.2. Under the same hypothesis and notations as apetd”’ = X + hT be a
homothety vector field of, with 2 never vanishing o/. The homogeneous functions of
degree 1 with respect tb’, defined orl/ and constant or¥, are the functions of type

dt
fx,n= F(x)exp</ Z) (16)

satisfyingLx f = 0, whereF is an arbitrary differentiable function ox'.

Proof. Let f be a differentiable function defined dh = X x I having the properties
described above. Thehs f = f andLy f = 0. We have

(df, Ty = (df, X + hT) = (df, X) + h(df, T) = h% = f

Hence,

dr
flx, 1) = eXp(/ 7 +<p(x)) )

whereg is an arbitrary differentiable function independent.dbettingF (x) = exple(x)),
we getEg. (16) O

Always in the context of the above lemmas, we denoterbhyU — X, U = ¥ x I,
the first projection, which is the projection &f on X' parallel to the integral curves of
T.LetT' = X + hTbe a homothety vector field @i/, A) different fromT, transverse
to X atp,i.e.h(p) # 0, andn’ : U — X the projection ofU on X parallel to the
integral curves off’. After having considered the identification Bf with ¥ x I and of
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T with 8/0¢, «’ is the map that takes each point 1) of U = X x I to the unique point
x" of X such that(x’, 0) and (x, ) belong to the same integral curve Bf. SinceX is
an one-codimensional submanifold @, A, T’) transverse td”, it possesses a Jacobi
structure(A’s, E%.) induced by(A, T'), in the sense oProposition 2.1such thatr’ is
ana’-conformal Jacobi map aiU, A|y) onto (X, Ay, Ey), wherea’ is a homogeneous
function of degree 1 with respect 10, i.e. L7va’ = a’, defined onJ and equal to 1 oix.
Next proposition states a relationship betwedr:, Ex) and(A’y, EY).

Proposition 2.2. Under the same assumptions and notations as gheeget
, 1 , 1
Ay =Ay — —XoANEy and Ey=—Egy,
ho ho

where hg and X are, respectively the restrictions ofh and X to ¥ x {0}, identified
with X,

Proof. Let f andg be two functions defined on a neighbourhdagd of p in . We denote
by F andG two functions defined on a neighbourhood pf 0) in X x I, constant on each
integral curve off’, whose restrictions t&' x {0}, identified with X, coincide withf and
g, respectively. Since’ : (U, Aly) — (X, Al E%.) is ana’-conformal Jacobi map, we
have

A's(df, dg) = ' A(dF, dG) and E% = 7 (A%(dd)),

with the following convention: if the left member of the first equation is evaluated=at/ x,
then the right member of this equation must be evaluated at a@ointof X x I belonging
to the integral curve of’ through(x, 0). We choose = x and: = 0.

We computedF anddG at (x, 0). We have

F
dF(x,0) = D, F(x,0) + aa—t(x, 0)dt,

where D, F is the partial derivative o with respect to the variables on X. Since
F(x,0) = f(x), D,F(x,0) = df(x). Moreover,(dF(x, 0), T'(x, 0)) = 0, becausé is
constant on the integral curves Bf. Last equality gives

oF 1
<¥(.X, O)dt, T(X, O)> = —m(df(x), X()C, 0))

So,

dF(x, 0) = df(x) — h(x—lo)(df(x), X (x, 0))dt

and also

dG(x, 0) = dg(x) —

1
. 0) (dg(x), X (x, 0))dt.

Then, taking into accouriq. (15)and the fact thatdt, 7) = 1,
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A/E(x)(df(x), dg(x)) =d’(x, 0) A(x,0 (dF(x, 0), dG(x, 0))
_d'(x,0)
" alx,0)

(As +T AEx) (df()— =
X > )(x,0) X h(x,O)

1
x (df(x), X (x, 0))dt, dg(x) — m(dg(x), X (x, O))dt)

= AE(X) (df(x), dg(x)) -

. 0) (df(x), X (x, 0))

x(dg(x), Ex (x)) + (dg(x), X (x, 0))(df(x), Ex(x)).

h(x,0)
So, we get
, 1
y=Ay — —XoAEy,
ho

wherehg and X denote, respectively, the restrictionsioind X to X' x {0}.
On the other hand,

E's(x) = T, 0 (A7, ) (dd (x, 0))).

But, @’ as a homogeneous function of degree 1 with respeft tequal to 1 on¥, is of
type (16). FurthermoreA’é(x)(da((x, 0)) = 0 and{(dd(x, 0), Ex(x)) = 0. Then,

1

A% o (ddl(x, 0)) = m(/x#g(x)(dd(x, 0) + (dd(x,0), T)Ex
B 9a’ B a/(x, 0
—(dd(x,0), Ex)T) = E(X»O)EE T h(x,0) 7
and we deduce
, 1

Proposition 2.3 ([2]). Let (M1, A1, T1) and (M2, A2, To) be two homogeneous Poisson
manifolds.

1. The productM1 x M> equipped with the Poisson tensds + A2 and the homothety
vector fieldT1 + T> is a homogeneous Poisson manifold.

2. Let X1 be an one-codimensional submanifoldwi transverse td and(A1x,, E1x,)
the Jacobi structure induced af; by the homogeneous Poisson structufg, Ti) of
M;. Then ¥ x M> is an one-codimensional submanifolddf x M transverse to
T1 + T>; the bivector fieldA x, « », and the vector field x, « u, that define its Jacobi
structure induced by the homogeneous Poisson stru¢tiwe- Ao, T1 + T2) of M1 x M>
are given respectivelyby the formude

AZ'1><M2 = Alxl + A2 - T2 AN E:I.Zl and EZ'1><M2 = Elzl-
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Proposition 2.4 ([2]). Let (M, A, T) be a homogeneous Poisson manifadd X and

3’ two submanifolds o#/ of codimension 1 transverse fa We assume that there exists
an integral curve off" intersectingX at a pointp and X’ at a point p’. We provideX
and X’ with the Jacobi structures induced by the homogeneous Poisson structfe of
in the sense dProposition 2.1Then there exists a conformal Jacobi diffeomorphism of a
neighbourhood of in X onto a neighbourhood gf’ in X', mappingp to p’.

Proposition 2.5 ([2]). With any Jacobi manifoldM, A, E) we may associate a homoge-
neous Poisson manifoldM, A, T) by setting = M x R,

i et 9 o9
A=ce A+ —ANE and T = —,
ot ot

wherer is the canonical coordinate on the fact®: Then

1. the projectionr : M — M is a¢’-conformal Jacobi map;

2. the Jacobi structure induced oW, considered as an one-codimensional submanifold
of M transverse tal', by the homogeneous Poisson structuretnfin the sense of
Proposition 2.1is the one given initially.

The manifold M, A, T) is called the Poissonization of the Jacobi manifald, A, E).
2.3. Compatible Jacobi structures

Generalizing the notion of compatibility of two Poisson tensord{&]), we are lead, ina
natural way, to the definition of compatibility of two Jacobi structures defined on a differen-
tiable manifold introduced ifi.9] by one of the authors. In this paragraph, we recall and we
complete some results fif9] on compatible pairs of Jacobi structures, useful in the sequel.

Definition 2.2. Two Jacobi structuregAg, Eg) and (A1, E1) defined on a differentiable
manifold M are said to be compatible (fAg + A1, Eo + E1) is also a Jacobi structure on
M;; this fact can be expressed by

[Ao, A1l = —EoA A1 —E1AAg and  [Eg, A1] + [E1, Ag] = 0.

Proposition 2.6 ([19]). Let (Ag, Eg) and (A1, E1) be two compatible Jacobi structures
on a differentiable manifold/. Then for anya € C°°(M, R) that never vanishes oM,
the Jacobi structuresAg, EG) and (A9, E{) a-conformal respectivelyto (Ao, Eo) and
(A1, E1) are also compatible oM.

Proposition 2.7 ([19]). Two Jacobi structure$Ag, Eg) and (A1, E1) defined on a dif-
ferentiable manifoldV/ are compatible if and only if the homogeneous Poisson tensors
Ag = e '(Ag + (3/3t) A Eg) and A1 = e~" (A1 + (3/01) A E1), with respect to/dr,
associatedrespectivelywith (Ag, Eg) and (A1, E1), are compatible oM = M x R.

Definition 2.3. A homogeneous bihamiltonian manifdldf, Ag, A1, T') is a differentiable
manifold M equipped with a paitAg, A1) of compatible Poisson tensors in the sense of
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Magri, i.e. Ag + A1 is also a Poisson tensor @i, and with a vector field” such that

LrAg=[T, Ao = —Ao and LyAy=|[T, A1] = —As.

Proposition 2.8. Let (M, Ag, A1, T') be a homogeneous bihamiltonian manifold. We de-
note byX and X’ two submanifolds o#/, of codimension Jltransverse to the homothety
vector fieldl'. We suppose that there exists an integral curvE witersectingX at a pointp
andX’ atapointp’. We provideX (respectively’) with the pair of compatible Jacobi struc-
tures((Aox, Eox), (A1x, E1x)) (respectively(Aox', Eos’), (A1s/, E1x))) induced by
the homogeneous bihamiltonian structurevbf Then there exists a conformal Jacobi dif-
feomorphism of a neighbourhood pfn X onto a neighbourhood gf’ in X', with respect
bOtf) to (Aox, Eox) and (Ags/, Eox'), and (A1x, E1x) and (A1sr, E1s/), mappingp
top'.

Proof. First, we remark that the Jacobi structutetysy, Eox) and(A1yx, E1y) (respec-
tively (Ags’, Egsr) and (A1, E1x)) are compatible; this is a direct result Bfoposi-
tions 2.1, 2.5 and 2.7

From Proposition 2.4there exists a conformal Jacobi diffeomorphigg(respectively
¢1) of a neighbourhood/o (respectivelyUs) of p in X onto a neighbourhood/; (re-
spectivelyU;) of p’ in X" mapping: (i)p to p’ and (i) anag (respectivelyu;)-conformal
Jacobi structure t@Agy, Eoyx) (respectively td A1y, E1x))to (Ags, Egx) (respectively
to (A1yr, E1x)). From the proof oProposition 2.4cf. [2]), we deduce that the diffeomor-
phismsgg and¢1, and also the functiong andas, coincide onlUg N Us. O

2.4. Nijenhuis operator

Let M be a differentiable manifold antl: VY(M)xC®(M, R) — VX(M)xC>®(M, R)
aC>(M, R)-linear map given, for all pair&X, f) € VX(M) x C®(M, R), by

NMX, f) = (NX+1Y, (y, X) + gf), a7)

whereN is a tensor field o/ of type (1,1),Y is a vector field onM, y is a differentiable
one-form onM andg is a differentiable functionoM. N := (N, Y, y, g) can be considered
as a vector bundle map’: TM x R — TM x R. Since the spac¥ (M) x C®°(M, R)
endowed with the bracket

[,]1: VX(M) x C®(M, R))?> —> VX (M) x C®(M, R),
defined, for all((X, f), (Z, h)) € VX (M) x C®(M, R))?, by

is a real Lie algebra, we can determine, in a natural wayifenhuis torsion7 (N) of A/
as theC*° (M, R)-bilinear map

TN) 1 VXM x C®(M, R))?> — VY (M) x C®°(M, R)
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given, for all(X, f), (Z,h)) € V(M) x C®(M, R))?, by

TN(X, £), (Z, ) =[N(X, ), M(Z, )] = NIN(X, f), (Z, b)]
—NI(X, ), MZ, ] +N?[(X, ), (Z,h)].

Definition2.4. A C®(M, R)-linearmap\V': VX (M )xC>®(M, R) — VX(M)xC>®(M, R)
is called a Nijenhuis operator oM if its Nijenhuis torsiorf7(\') identically vanishes
onM.

The notion ofNijenhuis operatointroduced above is a generalization of the notion of
Nijenhuis tensarWe recall that &ijenhuis tensoon a differentiable manifold/ is a tensor
field N on M of type (1,1) whose Nijenhuis torsion

T(N)(X, Z) =[NX, NZ] — N[NX, Z] — N[X,NZ] + N?[X, Z]
=(LnxN —NLxN)Z, (X, Z € VX(M)),
identically vanishes oM.

Using NV := (N, Y, y, g) we can construct oid = M x R atensor fieldV of type (1,1)
by setting

. 3 9
N=N+Y®dt+5®y+g5®dt, (18)

wheret is the canonical coordinate on the facfor

Proposition 2.9 ([20]). The tensor fieldV on M = M x R is a Nijenhuis tensor if and
only if

T(N)=Y ®dy, (19)
Lyy = gdy, (20)
LyN = -Y ®dg, (21)
‘N(dg) = Lyy + gdg (22)

whereT (N) is the Nijenhuis torsion ¥, L yy is the operator onM given forall X, Z €
Vi(M), by

Lyy(X,Z) =dy(NX, Z) +dy(X,N2) —d(‘Ny)(X, Z),

and!N is the transpose a¥ .

It is easy to prove that conditior{$9)—(22)assure thalV := (N, Y, y, g) is a Nijenhuis
operator onM, and reciprocally. So, we conclude:

Proposition 2.10. LetN: VX (M) x C®(M, R) — V(M) x C>®(M, R) be aC®(M, R)-
linear map given byeq. (17) Then A is a Nijenhuis operator ony if and only if its
associated tensor field on M, given byEq. (18) is a Nijenhuis tensor oM.
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2.5. Jacobi-Nijenhuis manifolds

Let M be a differentiable manifold of finite dimension equipped with a Jacobi structure
(Ao, Eg) and aC®(M, R)-linear map\': VX (M) x C®°(M, R) — VX (M) x C*°(M, R),
N = (N,Y,v,g), given byEq. (17) Then, we can consider ai the bivector fieldA1
and the vector field1 characterized by

(A1, En)* = No (Ao, Eo)*. (23)

If we ask under what conditions does the gaii, £1) define onM a new Jacobi structure
compatible with(Ag, Ep), in the sense dbefinition 2.2 we find (cf.[17]):

1. Ajis skew-symmetric if and only if
No (Ao, Eo)* = (Ao, Eo)* o 'V, (24)

wheré' VVdenotes the transpose/df This condition is equivalent to the following system
of conditions:

NEo = Ag(y) + gEo. (25)

NAB—Y® Eo= A}'N + Eg® Y, (26)

(v, Eo) =0. (27)
Then,

A =NAJ-Y®Eo=A§'N+Ey®7, (28)

E1 =NEy = Aj(y) + gEo. (29)

2. WhenA; is skew-symmetric(A1, E1) defines a Jacobi structure a4 if and only if,
forall (o, 1), (B, h) € RY(M) x C®(M, R),
TN (Ao, Eo)* (e, £). (Ao. Eo)*(B. 1))
= No (Ao, E))*(C((Ao, Eo). N) (e, f), (B. ).
In the last expressior((Ag, Eg), ) is the concomitant ofAg, Eo) andN defined,
forall (a, f), (8, h) € 2Y (M) x C®(M, R), by
C((Ao, E0), N)((a, ), (B, h))
= {(a. f). (B. W} — {Ma. f). (B. h)}o
—{(o, ), 'W(B. W} + N(e, £). (B, Do,

({, }; is the bracke{6) associated witliA;, E;), i =0, 1).
3. When(A4, E1) is a Jacobi structure, it is compatible withg, Eg) if and only if, for
all (o, ), (B, h) € _Ql(M) x C*®(M, R),

(Ao, E0)*(C((Ao, Eo), N)((«, f). (B, h))) = 0.

Hence, we introduce the following definition.
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Definition 2.5. A Jacobi—Nijenhuis structure on a differentiable maniftdds defined by a
Jacobi structure(Ag, Eg) and a Nijenhuis operatorVV that are compatible, i.e.
(i) Mo (Ao, Eo)* = (Ao, E0)* o "N and (ii) (Ao, Eo)* o C((Ao, Eo), N) 1 (21(M) x
C®(M, R))?2 — VX(M) x C°(M, R) identically vanishes oi/.

(M, (Ao, Eo), V) is said to be a Jacobi—Nijenhuis manifoldl.is called the recursion
operator oflM, (Ag, Eg), N).

Remark 2.2. The notion of Jacobi—Nijenhuis structure presented above is stricter than the
one introduced i17]. In Definition 2.5we require that the Nijenhuis torsioiiN) of N
identically vanishes o, while in[17] it is only required7(V) to be null on the image of

(Ao, Eo)*.

Let (M, (Ag, Ep), N) be a Jacobi—Nijenhuis manifoldA1, E1) the Jacobi structure
associated with A1, E1)* = N o (Ao, Eg)”, which is compatible with(Ag, Eg), and
a € C*®(M, R) a function that never vanishes ai. Let us consider the Jacobi struc-
tures(Ag, Eg) and (A9, E{) a-conformal to(Ao, Eo) and (A1, E1), respectively. From
Proposition 2.6(Ag, Ej) and(A{, Ef) are compatible. One may ask if there exists a Nijen-
huis operato\” := (N“, Y“, y“, g), compatible with(A§, E§), such thaiA{, E‘ll)# =
N o (A8, ES*.

Proposition 2.11. Under the same assumptions and notations as ghibvge exists a
recursion operatorN“ := (N“, Y?, y*, g%) of ((A§, E§), (A], EY)), where

da
N'=N-YQ® —, Y=y,
a

a ., da 1 da a 1
y'=v+ N——|g+-Lya)—, 8 =g+ —Lya.
a a a a

Proof. Taking into accounEgs. (11), (25)—(27)we deduce the expressions written above
of N, Y%, y? andg?. It is easy to verify thatV? = (N¢, Y4, ¢, g%) is a Nijenhuis
operator. Itis compatible withAg, EG) becaus€Aq, E{) is a Jacobi structure compatible
with (A3, ES). O

The Jacobi-Nijenhuis structugeAg, E§), N) is said to bei-conformako (Ao, Eo), N).

Definition 2.6 ([6,7]). A Poisson—Nijenhuis manifoldM, Ag, N) is a Poisson manifold
(M, Ag) equipped with a Nijenhuis tensof compatible withAg, i.e. (i) N Aj = ASN,
where!N is the transpose a¥, and (i) A% o C(Ag, N) : 21 (M) x QY(M) — VY(M)
identically vanishes oM. We denote byC(Ag, N) the concomitant of Magri—Morosi of
Ag andN given, for all(a, B) € 21(M) x 21(M), by

C (Ao, N)(a, B) = {a, B} — {'Na, BYo — {a, 'NB}o + 'N{a, Blo,

({, }i is the bracket associated with, A¥ = N' A}, i = 0, 1, that endows2(M ) with a
Lie algebra structure).
N is called recursion operator 0¥, Ag, N).
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Definition 2.7. A Poisson—Nijenhuis manifoltV/, Ag, N) equipped with a vector field
such that

LrAg=[T, AgJ=—Ap and LyN =0 (30)

is called a homogeneous Poisson—Nijenhuis manifold.

Remark 2.3. The homogeneous Poisson—Nijenhuis manifolds are a particular class of
homogeneous bihamiltonian manifolds @&finition 2.3. FromEq. (30) one had.;7 A =

[T, A1] = — A1, whereA; is the Poisson tensor associated with = N A5. Moreover,

T is a homothety vector field of each member of the hieraiehy, k € N), A¥ = N* A},

of pairwise compatible Poisson tensors generatedfdoy Ao andN, i.e. for allk € N,

L1 Ay = [T, A] = — A

Proposition 2.12. Let(M, Ag, N, T) be a homogeneous Poisson—Nijenhuis manifold and
X’ an one-codimensional submanifold Mftransverse tdl". Then (Ag, N, T) induces a
Jacobi—Nijenhuis structur& Aoy, Eox), Nx), Ny ;= (N3, Ys, ¥s, gx), on X charac-
terized by the following properties.

1. (Aoy, Eoyx) is the Jacobi structure induced dn by the homogeneous Poisson structure
(Ag, T) of M, in the sense dProposition 2.1

2. N5 := (N3, Yy, yx, gx) is the Nijenhuis operator induced an by the(N, T) struc-
ture of M, in the sense presented next. ket U — X be the projection or® of a
tubular neighbourhood/ of X in M such thatfor all x € ¥, 7~1(x) is a connected
arc of the integral curve of’ throughx, and let‘a’ be a differentiable function o#y,
that never vanishegqual tol on X and homogeneous of degree 1 with resped@t,tas
in Proposition 2.1Then Ny is the tensor field of typfl,1) on X induced byN, Yy is
the projection ofNT)|x onT X by, yy is the one of’ N(da/a))|s onT*X andgy
is the coefficient of the component(dIT)| 5 in the direction ofT .

Proof. Let a be a function onU possessing the above properties. Siace assumed
to be homogeneous of degree 1 with respect'tand never vanishing oV, one has
((da/a), T) = 1 andLy(da/a) = 0. Then, at each point € U, (da/a)(x) generates an
one-dimensional subspace®fU which is the complementary of the annihilat@r(x))°
of the subspacér (x)) of T, U generated by’ (x). Furthermore(da/a)|x = (da)|y is a
section of the annihilator df X.

Let us consider the projection: U — X parallel to the integral curves @f. We denote
by Tym : TsU — T X the vector bundle projection @fx U onto its subbundlg” X and
Tsw : T*Y — T3U its transpose. So,

(1)

3

p))

da
Tsnw=ldroy — | T® —
a

and!'Txr is the injection that prolongs every linear form @hto a linear form onJ that
vanishes on ke(Ts) = (T|x). Then, as we have observed (8&ction 2.2,

Abs =Tsmo(add)|s o'Txm, (32)
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Eos = Tsn(Akda)| ) (af(da))| 5. (33)

Of course, the restriction ol to U can be written as
1
Ag = ;(Aoz + T A Eoy). (34)
On the other hand, sinde; N = 0, the restriction ofV to U may be written as
da da

whereN 5 is atensor field oX’ of type (1,1) Y5 is avector field or¥, y5 isaone-form or&
andgy is a differentiable function o&'. Since the restriction &f sz : TxU — T X tothe
horizontal subbundI& X of Tx U, denoted by(Ts )y, is abijectionN|y : TsU — TsU
induces on¥' a tensor field of type (1,1) defined Bgm o N|y o (T);n)gl. Itis not hard
to verify that this one is jusVy, i.e.

Ny =Tsm o Nl|s o (Tzm)t. (36)

Moreover,Ys can be seen as the projection(dfT)|x onT7 X, i.e.
3 .
Y5 = Tsa(NT)[2)Z (NT) 5 — (((NT)|5)(da) )Tz, (37)

ys as the projection oft N (da/a))|s onT*X, i.e.

e (42) |+

andgy as the coefficient of the component@®fT)|x in the direction ofT' |z, i.e.

== {3,

Hence, fromN = Ny + Yy ® (da/a) + T ® yy + gxT ® (da/a) we define onX a
C°(X, R)-linear operatoN’s : V1(X) x C®(X, R) — VX(X) x C®(X, R) by setting,
forall (X, ) € VX(Z) x C®(X, R),

Ns(X, f)=(NgX +1Ys, (ys, X) + g5 f). (40)

Clearly, the tensor fiel& on U can be consider as the tensor field associated Afjth=
(Nx,Ys,vs, gs), in the sense oSection 2.4 Then,Proposition 2.1dmplies thatNy

is a Nijenhuis operator otx'. We are going to verify its compatibility with the Jacobi
structure(Agx, Eox) of X. From Definition 2.5 the required conditions are: (Y5 o
(Aox, Eox)* = (Aox, Eox)* o'Nx and (ii) the mag Aox, Eox)* o C((Aox, Eox), Nx)
identically vanishes oiX'. But, after a long computation, we may confirm that the above
mentioned conditions hold if and only if the tensor fields and N (cf., respectively,
formulae(34) and (35) verify

NA§ = AS'N and A} o C(Ag, N) =0. (41)

,T|);>da|2, (38)
s

, <NT>|E> | (39)

Since(Ag, N) is a Poisson—Nijenhuis structure &y from Definition 2.6 Eq. (41)holds.
Conseguently, conditions (i) and (ii) also hold, apnths, Eox) and Ny are compatible
onxX. 0
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Remark 2.4. Let ((Ax,k € N),T), Af = N*A}, be the hierarchy of pairwise com-
patible Poisson tensors, homogeneous with respeét, tgenerated o by (Ag, N)

(cf. Remark 2.3. Each membetAy, T') of this hierarchy induces o a Jacobi struc-
ture (Axx, Exy), in the sense oProposition 2.1 Hence, we obtain orE a sequence
((Axz, Exx), k € N) of Jacobi structures. It is easy to verify that they are pairwise com-
patible and that, for alt € N, (A5, Ery) coincides with the structure defined by

(Ars, Exs)* = N5, o (Aos, Eox)*.

As in Section 2.2we remark that when a Poisson—Nijenhuis manifdii Ag, N) pos-
sesses a vector fielfl verifying Eq. (30) this one is not unique; all the vector fields of
typeT + X, whereX is an infinitesimal Poisson automorphismAj such that.y N = 0,
also verifyEq. (30) Let X' be an one-codimensional submanifoldiMftransverse to two
different homothety vector field§ and 7’ of Ag such thatLyN = 0 andLyN = 0.

In Section 2.2we studied the influence of the choice of a such vector field on the Jacobi
structure induced o&' by the homogeneous Poisson structurdfofNext, we are going to
study the influence of this choice on the Nijenhuis operator induced by the Nijenhuis
tensor ofM.

Lemma2.3. Let(M, Ag, N, T') be ahomogeneous Poisson—Nijenhuis manifbld sub-
manifold ofp of codimension transversetd,and((Aox, Eox), Nx),Nx = (Nx, Y5,
vy, &5 ), the Jacobi—Nijenhuis structure induced an by the homogeneous Poisson—
Nijenhuis structure(Ag, N, T) of M, in the sense oProposition 2.12Then a vector
field T’ on M verifiesEq. (30)if and only if it is of the type

T' = X + hT,

whereX is a vector field tangent t& and# is a differentiable function verifyinggs. (13)
and (14)and alsaq the following:

LxNy +Ys®Dh+[X, T1® ys + (X, Y]

—‘r(dh, T)YE +g2[X, T])®%:O, (42)
~!'NyDh+i(X)dys + D({ys, X)) — (dh, T)ys + gsDh =0, (43)
—Ly;h+ Lxgs + (d({ys, X)), T) =0, (44)

whereD denotes the partial derivative with respect to the variableson

Proof. We recall the proof olLemma 2.1and we requirel’ = X + hT also satisfies
Ly N = 0. Taking into accounEg. (35) we verify thatL;N = 0 if and only if X andh
fulfill Egs. (42)—(44) O

Proposition 2.13. Let(M, Ag, N, T) be a homogeneous Poisson—Nijenhuis manifald
an one-codimensional submanifold &f transverse tol', and 7’ = X + hT another
vector field onM transverse toX such that(Ag, N, T’) also defines a homogeneous
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Poisson—Nijenhuis structure oM. Let us endowX with the Jacobi—Nijenhuis struc-
(N%., Y5, vs, &), induced respectively by the homogeneous Poisson—Nijenhuis struc-
tures(Ag, N, T) and(Ag, N, T') of M, in the sense dProposition 2.12Then

1 1
AE)Z = Aoy — —XoA Egpx, and E(/)Z‘ = —FEoy, (45)
ho ho
, 1
NE:NE_h_oXO(XWZ’ (46)
, 1
Yy, = Ny Xo— h—o(yz, Xo)Xo + hoYs — gs Xo, 47)
1
Yy = Vs (48)
0
, 1
gy =8z + h—o<7/z, Xo), (49)

whereXg andhg are, respectivelythe restrictions ofX and/ on X.

Proof. The formulag45)are the result oProposition 2.2In order to proveEgs. (46)—(49)
we consider the same identifications as in the prootseofimas 2.1 and 2.8ndProposi-
tions 2.2 and 2.12 etx’ : U — X be the projection parallel to the integral curvesof
anda’ a homogeneous function of degree 1 with respe@t'talefined on/, and equal to
1lonX (cf. Lemma 2.2. We denote byf'sn’ : Tx U — T X the vector bundle projection
of Tx U onto its horizontal subbundIEX associated witkx’. We remark that

da 1 da

a’ Z_hoa

X
whereq is the homogeneous function of degree 1 with respeft twonsidered in the above
mentioned proofs, and also that

da
TZ‘T[/ = |dT2U — (T/ ® 7)

)

1 da 1 da
(31)T

=|dT;U_(XO+hOT|E)®h__ =Tsm— —Xo® —
0 ad|x ho als

From the geometric interpretation of the tensor fields that defirke thve Nijenhuis operator
induced by the Nijenhuis tensor af (cf. Proposition 2.1, and considering also the
identifications already made, one has

Ny =Tsgn' o N|s o (Tt Yy = Txn'(NT)|x),
dal dal da dal
/ — tN _ tN , T _ s 4 = {— NT/ .
Ys ( _a’)): << ) |z 7y 8x p 2,( )Nz

Taking into accountg. (35) the computation of the above formulae yieldgs. (46)—
(49). O
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Proposition 2.14. Let(M, Ao, N, T) and(M’, Ay, N', T") be two homogeneous Poisson
Nijenhuis manifolds.

1. The productM x M’ endowed with(Ag + Ay, N + N', T + T') is a homogeneous
Poisson—Nijenhuis manifold.

2. Let X be an one-codimensional submanifoldMftransverse td" and ((Aox, Eox),
Nx), N5 = (Ng, Yz, ys, gx), the Jacobi—Nijenhuis structure induced anhby the
homogeneous Poisson—Nijenhuis structwg, N, T) of M, in the sense oProposi-
tion 2.12 Then (i) ¥ x M’ is an one-codimensional submanifoldidfx M’ transverse
to T + T, (ii) if ((Aozxm’s Eoxxm) Nexm) Nexmr = (Nxwm's Ysxm's Voxm's
gxxm’), denotes the Jacobi—Nijenhuis structure inducedonM’ by the homogeneous
Poisson—Nijenhuis structurelo + Ay, N + N', T + T’) of M x M’, its tensor fields
are given respectivelyby the formue

Aozxm = Aos + Ag—T' A Eos  and  Eozxy = Eos. (50)
Nyww =Ns+N' —-T'®ys, (51)
Ysum =Yy + (N —gzldmm)T’, (52)
YExm =Yz, (53)
gxxM = 8x- (54)

Proof. We are only going to provEgs. (51)—(54)the first part and the fact thak x M’ is
an one-codimensional submanifoldf x M’ transverse t@ + T’ are obvious; formulae
(50) are the result oProposition 2.3

LetU anda be, respectively, the tubular neighbourhoodiofh M and the homogeneous
function of degree 1 with respectTodefined or/ and equal to 1 o’ that we have consid-
ered in order to construct the Jacobi—Nijenhuis structwe s, Eox), Nx) induced onx
by the homogeneous Poisson—Nijenhuis structdig N, T) of M (cf. Proposition 2.1p
Now, we take the submanifold x M’ of M x M’ and the tubular neighbourho@dx M’
of ¥ x M'in M x M’, and we extend the functian(initially defined onU) onU x M’ by
imposinga to be constant on each section of tfpg x M’, x € U. Of course, the extended
functiona is equal to 1 onX x M’ and it is homogeneous of degree 1 with respect to
T+T.

Letm : U x M' — X x M’ be the projection parallel to the integral curvesio# T'.
We denote byI'sy @ Tsxy (U x M) — T(X x M') the vector bundle projec-
tion of Ts (U x M') = TsU & TM onto its subbundl€ (X x M) =TX & TM.
We have

a

.. da
Tsxwrn =y, wxm)y— (T +T)Q —
ZxM
da da
= IdeU + IdTM/ - (T ® _> — (T/ ® —)
ZxM a

a

: (55)
XxM’
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and we remark that the restriction 6§ 5,/ to the horizontal subbundlE(X x M") of
Ts (U x M'), denoted by(Tx .y 7 ), is the identity. FronProposition 2.12

Nswmr = Tsxmmw o (N + N)|gxm o (TxxM’ﬂ)ﬁl,

Ysxm = Txxm (N + NN + T sxm)s

t / da
vexm=| (N+N)—
a/Jlsxm

(o)
—( (' +N)Y=
a

(N + N')(T + T’))szM/>.

(T + T/)lzxM’>da|>:xMu
IxM

<da
8xxm = \—
alyxm
Taking into account(55), the computation of the above formulee yielkgs. (51)-
(54). O

Proposition 2.15. Let(M, Ag, N, T) be a homogeneous Poisson—Nijenhuis manifold and
let us consider two one-codimensional submanifdidand X’ of M transverse td’. We
suppose that there exists an integral curv& afitersecting® at a pointp and X’ at a point

p’. We equipX (respectivelyx’) with the Jacobi-Nijenhuis structu@Aosx, Eox), Nx),
Nx:=(Nx,Ys,ys. gx), (respectivelf(Aos', Eos'), N3), Ns:=(Nx, Y51, y51. g57)),
induced by the homogeneous Poisson—Nijenhuis stru¢ttgeN, T) of M, in the sense

of Proposition 2.12Then there exists a diffeomorphism of a neighbourhoog o X
onto a neighbourhood g#’ in X’ that maps: (ija Jacobi—Nijenhuis structureonformal

to ((Aox, Eox), Nx), t0 ((Aox', Eox), Nxv) and (i) p to p'.

Proof. Let(A1yx, E1y) (respectively A1, E15)) be the Jacobi structure an (respec-
tively X') generated by(Agx, Eox), Nx) (respectively((Agsr, Egs’), Ns/)). One has
that(A1x, E1x) (respectivelyA1s/, E151)) is compatible with Agx, Eox) (respectively
(Agxr, Eoxr)). Taking into accounRemark 2.4(A1x, E1x) (respectivel A1y, E1xr))
can be seen as the Jacobi structure induced drespectivelyX’) by the homogeneous
Poisson structureAq, 7)), A = NA*S, of M. Then, fromProposition 2.8there exista €
C*°(X, R) that never vanishes a1, and a diffeomorphism of a neighbourhood gf in ¥
onto a neighbourhood ¢f in X" mapping : (i) the pait(Agy., Efx). (Af, E{5)) of com-
patible Jacobi structurea;conformal to((Aoyx, Eox), (A1x, E15)), to ((Agx, Eos’),
(A1xr, E1x)) and (i) p to p'.

As it was shown inProposition 2.11((Ags., Egx), (A]5, E{5)) possesses a recur-
sion operatol\V%, = (N%, Y&, y&, g%). It is not difficult to check thatp takesN%, :=
(NS, Ve, vs, 85) toNs := (Nxv, Ysr, ysr, g5), i-€. at each point of the considered
neighbourhood op in X,

Nx/(¢(x)) = Tup o N&:(x) o (Tep) ™™, Yo (p(x) = Tp (Y5 (%)),

ys(@) = (L) LrE(x),  gx(p(x)) = g% (x).
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So, ¢ maps the Jacobi-Nijenhuis structu€Ags., E§s), N5) to ((Aox, Eox),
Ns). O

Proposition 2.16. With any Jacobi—Nijenhuis manifoldV, (Ao, Eo), /\/’) N: = (N,Y,
¥, g), we may associate a homogeneous Poisson—Nijenhuis maqildio, N, ) by
setting

- ~ ]
M=M xR, Ao=et<Ao+§AEo),

N—N+Y®dt+a® + a®dt T 90
o ar OV T8y, ’ ar’

wherer is the canonical coordinate on the factfir

The Jacobi—Nijenhuis structure induced &h considered as an one-codimensional sub-
manifold of M transverse td’, by the homogeneous Poisson—Nijenhuis structurd oh
the sense dProposition 2.12is the one given initially.

Proof. The facts thatAg, 7') endowsM with a homogeneous Poisson structure andahat
is a Nijenhuis tensor oM are well known, respectively, froRropositions 2.5 and 2.18o,
it is enough to check the compatibility of these structures; condilipn? = 0 obviously
holds.

It is easy to prove that

NAy= Ag'N
if and only if relationg(25)—(27)hold. Hence,
No (Ao, Eo)* = (Ao, Eo)* o'N & NAS = ABIN.
On the other hand, whegqgs. (25)—(27are satisfied, we can prove that
(Ao, Eo)* 0 C (Ao, Eo), N) = 0 & Ao C(Ao, N) =
Therefore, from the compatibility afAo, Eo) with N, we deduce the compatibility ofo
WIt‘Ph]Z'proof of the second part of this proposition presents no difficulty. a

Remark 2.5. If (M, (Ao, Eo), ) is a Jacobi—Nijenhuis manifold in the sense of the def-
inition given in[17], i.e. the torsiori7(\) of A only vanishes on the image 0fio, Eo)*,
then(Ap, N) defines a weak Poisson—Nijenhuis structurédbm the sense dfL8], i.e. the

Nijenhuis torsion (N) of N only vanishes on the image dfg.

FromProposition 2.1&ndRemark 2.4ve conclude, as for the Poisson—Nijenhuis man-
ifolds, the following theorem.

Theorem 2.1 ([17]). A Jacobi—Nijenhuis structurg@ Ao, Eg), NV') on a differentiable man-
ifold M generates a hierarchy( Ay, Ex), k € N) of pairwise compatible Jacobi structures
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onM. Forall k € N, (A, Er) is the Jacobi structure associated with the vector bundle
map(Ax, EQ)* : T*M x R = TM x R, (Ax, Ex)* = N* o (Ag, Eo)*.

Furthermoreforall k, I € N, the pair((Ax, Ex), N'!) defines a Jacobi—Nijenhuis struc-
ture onM.

3. Part Il

In this part of our work, we will establish some local models of homogeneous Poisson—
Nijenhuis structures (cDefinition 2.7). We apply the technic developed 6] for the local
classification of pairs of compatible symplectic forms, and we lean on the results established
in [21] and[23], by one of the authors, concerning the construction of canonical forms of
Poisson—Nijenhuis structures.

3.1. The regular locus of N

Let M be a differentiable manifold. We denote Ky;/[A] the algebra of polynomials of
one variable with coefficients in the rind(M, K) of the C*°-differentiable functions, if
M is a real manifold, or of the holomorphic functions &h if M is a complex manifold. A
polynomial P of K ,[A] is said to berreducibleif it is irreducible at each point off, and
two polynomialsP and Q of K j/[)] are said to beelatively primeif they are relatively
prime at each point of/.

Let N be a Nijenhuis tensor aif. It defines a section of the vector bundle H@rivl, TM)
— M, where Hon{TM, TM) denotes the bundle of the endomorphism¥

Definition 3.1. We say that the algebraic type of : M — Hom(TM, TM) is constant
on an open neighbourhodd of a pointp € M, if there exist irreducible polynomials
Py, ..., P, € Ky[A], relatively prime, and positive integetg,i = 1,...,r,j =1,...,s,
suchthat, ateache U, (P",i =1,...,r,j = 1,...,s;) is the family of the elementary
divisors of N(x) : TyM — T M.

From a geometrical point of view, the algebraic typeMdf: M — Hom(TM, TM)
is constant orUU if, at eachx € U, T, U is expressed as a direct sum 8fx)—cyclic
subspaces isomorphic to th& p)—cyclic subspaces df,U.

Definition 3.2. The mapN : M — Hom(TM, TM) is said to be O-deformable @, if the
family (Pi"IJ i=1...,r,j=1,...,5;) ofits elementary divisors does not depend on the
pointx € U.

Of course, in the case whene is 0-deformable ort/, its algebraic type is constant on
U.

The set of points in possessing an open neighbourhood on which the algebraic type
of N is constant, is an open dense subse¥ofcf. [21]).
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Definition 3.3 (Conditionsof regularity). Apointp € M is said to be regular with respect
to N if it possesses an open neighbourh@bth M such that:

1. the algebraic type a¥ is constant or/;
2. the subspaces

E = ﬂ kerdf; (x)
=1

of T,U,x € U,wherefs, ..., f; are the functional coefficients of the irreducible factors
of the characteristic polynomi&y of N, define a distributio of constant rank od/;
3. the algebraic type of the restriction dfto £ is constant ort/.

Definition 3.4. We call regular locus oV, and we denote bRy, the set of the regular
points of M with respect tav.

The setRy is an open dense subsetMf(cf. [21]).

3.2. Decomposition of homogeneous symplectic Poisson—Nijenhuis manifolds

Let(M, Ao, N, T) be ahomogeneous symplectic Poisson—Nijenhuis manifoldi .
nondegenerate, fact that impogédo have even dimensioh,; Ag = —AgandL7 N =0,
and letp be a point ofM having an open neighbourhoddin M on which the algebraic
type of N is constant. We denote iy the characteristic polynomial &f and we assume
that it is written onU as a producPy = P; - P2 of two polynomialsP; and P, relatively
prime, with leading coefficient 1. Let us si = P1(N) and N2 = P2(N). Then,TU =
ker N1 @ ker N> and alsoTU = Im N2 @ Im N1, because keN1 = Im N> and kerN, =
Im N1. The vector bundle maps; : ImN; — Im N;, i = 1, 2, are isomorphisms. Also,
T*U = Im'No @ Im Ny, where! N; = P;(“ N) is the transpose d¥;,i = 1, 2.

Lemma3.1. The vector subbundldm N;,i = 1, 2, are involutive.

Proof. Let X andY be two sections of InVv;. SinceN; : Im N1 — Im N7 is an isomor-
phism,X = N1V andY = N1W, whereV andW are also two sections of Ii1. Then,
[X,Y] = [N1V, N1W] = T(N1)(V, W) + N1[N1V, W] + N[V, NyW] — N2[V, W].
But, T(Ny)(V, W) = Zf‘zo(ar(V)N’W —a,(W)N"V), wherea,, r = 1,...,m, are
one-forms, and s@' (N1)(V, W) is a section of ImV1, because/ and W are sections of
Im N1. Consequently,X, Y] is a section of ImVq, and the involutivity of ImN; is proved.
Analogously, one proves the involutivity of I¥. a

Then, ImN1 and ImN3 define two complementary foliations 6f. Consequently, on a
convenient neighbourhood @f M is identified with a producd’ x M” of two manifolds;
M’ (respectivelyM”) is represented by the set of the leaves of the foliation defined IsIm
(respectively ImV;). Hence,TM' = Im N, = ker N1 andTM” = Im N1 = ker Na.
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Lemma 3.2. Forall k € N, Ax(Im’N», Im?N1) = 0, where A, is the Poisson tensor
associated with the vector bundle maf : 7*M — TM, A¥ = N* A3

Proof. For all«a, 8 one-forms orlJ/,

Ax(‘Noa, 'N1B) = Ap(P2('N)a, P N)B) = Ax(P1(N)P2('N)ex, B)
= Ar(Pn(‘N)a, B) =0
becauséPy is an annihilator polynomial div. a
Proposition 3.1. Keeping the same assumptions and notations as ablmbomogeneous
symplectic Poisson—Nijenhuis manifql¥, Ao, N, T') is identified on a neighbourhood

of p, with the product(M’, Ay, N', T") x (M", Ay, N", T") of homogeneous symplectic
Poisson—Nijenhuis manifolds.

Proof. FromLemma 3.2the tensor fieldsi, k € N, are locally expressed as

0 d
Ap = Z fku8 Bx] Z gklm— A oo’

ay;
1<i<j<ni 1<i<m<ny o

where(x1, ..., xn,), n1 = dimM’, (respectivelf(y1, ..., yu,), n2 = dimM”), is a local
coordinate system a#f’ (respectivelyM”). Since Ax, k € N, are pairwise compatible
Poisson tensors, their associated Poisson bra¢kgtsk € N, verify the Jacobi identity
and the generalized Jacobi identity. Applying these identities to the coordinate functions,
we prove that, for alk € N, fiij, 1 <i < j < ny, only depend on-coordinates angm,
1 <! < m < np, only depend ory-coordinates (cf[21]).

Let us set, for alk € N,

, 3 0
A=) fku 5%, and A= Y gdmi—

0 8 '
1<[<]<n1 1§l<m§n2 yl )’m

A, (respectivelyA)), k € N, define onM’ (respectivelyM”) a hierarchy of pairwise com-
patlble Poisson tensors, with}) (respectivelyA;) nondegenerate aif’ (respectivelyM”),
whose recursion operatov’ (respectlverN”) is the projection ofN|im y, (respectively
N|im n,) ON IM N> (respectively ImVy). The characteristic polynomial af’ (respectively
N") is P1 (respectivelyP,).

From this decomposition, the homothety vector figldgs written as

T = T/ + T//,
whereT’ (respectivelyT”) is a vector field tangent td’ (respectivelyM”), i.e. in the

(x, y) product coordinates g¥f = M’ x M”,

T’ _Zal(x y)— and T’ —Zb[(x y)—.

i=1
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So,L7 Ag = —Ag if and only if

LAy =T, Ap] = — Ay, (56)

LAY =[T", A§] = — A}, (57)

Ly A+ Lyn Ay =[T', AG) +[T", Ag]l =0, (58)
andLr A1 = —Aj (cf. Remark 2.3if and only if

Ly Ay =T, A}] = —AY, (59)

Ly Ay =[T", Al = —A], (60)

Ly A+ Lpn Ay = [T, A]] +[T", A}] =0. (61)

Since Ay and A are nondegenerate, respectively, dh and M”, taking into account
:th?. (56), (57), (59) and (60and the fact than; = N’ Ay andA] = N” Ag, we conclude
a

LT/N/ =0 and LTNN// =0. (62)
So,LyN = 0ifand only if
Ly N" + LN =0. (63)

But, the local expressions df»N” and Ly»N’ only have, respectively, terms of type
d/0x ® dyandd/dy ® dx Then,Eq. (63)holds if and only if

LyN’"=0 and Ly N =0. (64)
Consequently, condition$8), (61) and (64yive
Ly A+ LprAy=LpN" - Ag+ N" - LpAg+ LyoN' - Ag+ N' - L A
= N” . LT’AS + N/ . LT//A/O = NH . LT/AS — N/ . LT’Ag
=(N"—=N')- Ly Ag=0.
Thus, we obtain that, out of the singular locus\gfandN”,
Ly Af =0, (65)
and, on account dg. (58)
LAy =0, (66)

After a straightforward computation, we find that(i y)-coordinateskqs. (65) and (66)
have, respectively, the matricial expressions

day dap, dby aby,
iy n ax1 0 axp

Ag - : : =0 and Ap- : : =0.
day dap, db1 ab,

8yn2 “ee an ax”l ... ax”l
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SinceAg andAg are nondegenerate, respectivelyjdfiandM’, the above equations imply
that, out of the singular locus &f’ and N”, the functional coefficients;, i = 1, ..., n1,
of T’ only depend on the-coordinates and the functional coefficients! = 1, ..., no,
of T” only depend on the-coordinates. From the continuity of, i = 1, ..., n1, andby,
I =1,...,n2, 0nM, the above result holds on any neighbourhoog @i M.

FromEq. (56)(respectivelyEq. (57) andEq. (62) we deduce that’ (respectivelyl’”)
is a homothety vector field afdy, N') (respectively(Ag, N”)). O

3.3. Local models of homogeneous symplectic Poisson—Nijenhuis manifolds

Let (Ao, N, T') be a homogeneous symplectic Poisson—Nijenhuis structure defined on a
differentiable manifoldv/ of dimension 2. From the results of the previous paragraph, the
problem of constructing a local model @fig, N, T') reduces to the search of the normal
form of these tensor fields in the particular case wiekeis a power of an irreducible
polynomial. The possible case are:

L PO =G+ )
2. Pn(A) = (A2 + ga + h)", (this case arises if/ is a real manifold).

Studying the two cases separately, we establi§hThthe following theorems.

Theorem 3.1. Let(Ag, N) be a symplectic Poisson—Nijenhuis structure defined on a dif-
ferentiable manifoldV (real or compleX of dimension 2pand p a regular point of M

with respect taV. If the characteristic polynomial a¥ is of typePy (1) = (A + f)?* and
df(p) # 0O, then there exists an open neighbourhddf p in M with local coordinates
(), y1, y2)yi=1,..om,j=1,...,2r,r1> - = ry,Wherey, = f —a,a = f(p),
centered ap, in WhICh (Ao, N) has the following expression:

poo (3 ) o o
0~ ! : dyr dy2’

1 i1 Oxgg Oxy

0
N=—(y2+a)|d+H+§®a—Z®dY2, (68)
1
where
m ri—1 9
H= > ( @dXy 4+ —— ® d>(2k> , (69)
Bl 27 YN Xy 1o
m ri 1 ; . 1 ; .
o =dx+ Z (Z [(k - 5) Xy g + <k + 5) xzkldxlzk]) ; (70)
i=1 \k=1
3 Ny 1\ . 9 1\ . 8
7z =—+ k+ =) xt — — k= =) X}, — . 71
ax% ; (]; |:< 2) -1 OX5_q ( 2) ok dxy; :|> (1)

If df(p) = 0, the above expressions do not include thend y, coordinates.
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Idea of proof. After the determination ifi21] of the canonical form of a nondegenerate
bivector defined on ardimensional vector spadé and of an endomorphism &f, and

also of a symplectic Poisson—Nijenhuis structure depending on a parameter whose recursion
operator is nilpotent and 0-deformable, with respect to the parameter too, we construct the
model of(Ag, N) as follows.

If df(p) = 0, sincep € Ry, f is constant on/ and (Ag, N + fld) defines onU
a symplectic Poisson—Nijenhuis structure whose recursion operator is 0-deformable and
nilpotent. Then, its model is well known from the precedents and from it we easily deduce
the normal form of Ag, N).

If df(p) # 0, we consider the paitAg, N + fld) of tensor fields that induces on the
integral manifolds of the quotient bundle ldfy X , whereX ; = A’g(df), a symplectic
Poisson—Nijenhuis structure depending parametricallyf omhose recursion operator is
nilpotent and 0-deformable, with respect to the parameter too. For all values of the parame-
ter f, the model of the induced structure is well known from the previous study. From this
model, we establish the normal form@fo, N), presented byheorem 3.1In the local ex-
pressions (67)—(71) of (Ag, N), m denotes the number of thev + fld)(x)-invariant
subspaces in which the quotient spacedder)/X r(x), x € U, is decomposed; the
ith-subspace, = 1, ..., m, is decomposed into tw@V + fld)(x)-cyclic subspaces, both
of dimensiorv;; y» = f —a,a = f(p), andyy is chosen in such a way thatdy; = X ¢.

The models are completely determined by the algebraic typé of |

When Py(k) = (A + f)? anddf(p) # 0, we find that, in the coordinates of
Theorem 3.1

0
A1=—(y2+a)Ao+17+Z/\E, (72)
1

n=> 1> 8 A ia , (73)
and that a representative of the homothety vector fletif (A, N) is the vector field

29 & 3
T=— + X + y1—; 74
00 ] o peeC 7o

i=1 \k=1

it is a model of 7, modulo the addition of an infinitesimal Poisson automorphisrof
Ag such thatLy N = 0. We remark that, ifif(p) = 0, Egs. (72) and (743lo not include
coordinatey; andy,.

In the case wher@y (L) = (A2 4+ g + h)", with g2 — 4h strictly negative on a neigh-
bourhoodU of p in M, the construction of the models is based on: (i) The existendé on
of a complex structurd, i.e. J2 = —Id and its Nijenhuis torsion identically vanishekis
the semi-simple part of the operat¥p = 2(4h — g%)~Y2N + g(4h — g%)~1/2d, so there
exists a polynomialD € Ky[1] with constant coefficients, becausg is 0-deformable,
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suchthat/ = Q(Np), i.e.J is a polynomial operator a¥ whose coefficients are functions
depending org andh (cf. [24]); (ii) The following lemma.

Lemma 3.3 ([21]). Under the same assumptions and notations as abeveo (respec-
tively A1) be the tensor field associated with the vector bundler@p: JA’S (respectively
Ah = J A%). Then Ao (respectivelyA) is a Poisson tensor compatible witky (respec-
tively A1), and Ag = Ag — i Ag (respectivelyd; = A1 — i A1) is a holomorphic complex
Poisson tensor.

Furthermore (Ag, A1) is a pair of compatible holomorphic complex Poisson tensors.

We remark that the recursion operator(dfo, /il) is alsoN that is holomorphic. More-
over, the regular locus d¥, seen as a holomorphic tensor field, coincide with the oné,of
seen as a real tensor field, and its characteristic polynomi\ @) = (A + f)", where
f = (1/2)[g — i(4h — g®)1/?]is a holomorphic function. So, there exists a neighbourhood
U of p in M with local complex coordinate®z) ), w1, wp), j =1,...,m, I =1,...,2r;,
r1>--- > ry, centered ap, in which Aq and A, are given, respectively, b$7) and (72)

If ((xl/), ui, u; (yl/), v, ), j=L1...,mil=1...,2rj,r1> - >y, is the system

of real coordinates ol associated with the complex one, after making the convenient
replacements in the obtained expressionsﬁ@fand A1, we take their real parts. Hence,
we obtain a normal form ofAg, A1) and, consequently, d¥. They are presented in next
theorem.

Theorem 3.2. Let (Ag, N) be a symplectic Poisson—Nijenhuis structure defined on a
real differentiable manifoldVf of dimension 2nand p a regular point of M with re-
spect toN If the characteristic polynomial oV is of typePy (1) = (A2 + g + h)",

with g2 — 4h locally strictly negativethen there exists an open neighbourhd@df p

in M with local coordlnates((xl) U1, U2; (yl) vi,v2), j =1...,m 1l =1...,2r,

ri > --- > ry, centered atp, in which the tensors fieldgo and N are expressed as
follows:

m rj
1 d 9 d d
Ao = [ZZ< NS T T N )]
j=1Lk=1 Oxpp_q  0xy  Byy_q  Oyy
0 d d d
<—A———A—>, (75)

dui1 dup dvy  0v2

9
N =—(uz +a)ld — (va + b)J + Hy +H,,+8 ® (o — ay)

d
- ® (ox +ay) — Z, @ (dip + dvo) — Z, @ (dwp — dvp), (76)
1

wherea = Rea, b =Ima, (a = f(p)),
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J= Z( - dx/ —8—®dw>—a—®dv1—a—®dvz
l

el ol

m _r_/-—l T
n=3| 5 (e —ouy) |

j=1[ k=1 0xp_y X912 i

n | 9 ]
Hy = Z Z ( ® d)/2k+1 +t—F9® dyék) ’

j=1| V%1 8y2k+2 ]

a = dd+Y (Z [(k ) e, ( ;) xgk_ldxgk]) ,

j=1 \k=1
mo [l 1N\ .
oy = Z ( [(k - E) e <k + 2) Yok 1dy§k])
j=1 \k=1
Ay (] 1\ d 1\ ; 9
sz—l—i—Z( |:<k+—>xék_l . —(k——)xék—.j|>,
axy o \ia 2 dxge_q 2 dxzy
m rj
1 i d 1 i 0
j=1 \k=1 2 31 2 0y

After a long computation, we show that, in the coordinateStaforem 3.2

Yy PV U A
38x1 x2k Ly ,- Yor-17; ui v1

j=1k=1 Xok—1 dYo_1 duy ovy

(77)

is a representative of the homothety vector figldf (Ag, N), modulo the addition of an

infinitesimal Poisson automorphiskof Ag such thatLx N = 0.
From this study, we conclude the following theorem.

Theorem 3.3. Let(Ag, N, T) be a homogeneous symplectic Poisson—Nijenhuis structure
defined on a differentiable manifol of dimensiorn. Then on a neighbourhood of each
regular point p of M with respect toN, the model of M, Ag, N, T) is a finite product

of homogeneous symplectic Poisson—Nijenhuis manifolds whose recursion operator has as

characteristic polynomial a power of an irreducible polynomial.

If M is a complex manifoldhe Poisson—Nijenhuis structure’s model of each factor of
this product is given byheorem 3.Jand the model of the corresponding homothety vector
field is given byEq. (74) modulo the addition of an infinitesimal Poisson biautomorphism

of the factor’s Poisson—Nijenhuis structure.
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If M is a real manifold, the Poisson—Nijenhuis structure’s model of each factor of this
product is given byrheorem 3.r Theorem 3.2according to the type of the characteristic
polynomial of the factor’s recursion operat@nd the model of the corresponding homothety
vector field is givejrespectivelyby Eq. (74)or (77), modulo the addition of an infinitesimal
Poisson biautomorphism of the factor’s Poisson—Nijenhuis structure.

The models are completely determined by the family of the elementary divistits of
(We notice that each elementary divisor appears an even number of times in this)family.

3.4. Local models of homogeneous Poisson—Nijenhuis manifolds of odd dimension

Let (Ao, N, T) be a homogeneous Poisson—Nijenhuis structure defined2n-a 1)-
dimensional differentiable manifoltf, with Ag of maximum rank on an open dense subset
of M. Using the results on: (i) the local models of symplectic Poisson—Nijenhuis structures
(seeSection 3.3and[21]); (ii) the symplectization of a Poisson—Nijenhuis structure (see
[22]) and (iii) the reduction of a Poisson—Nijenhuis structure (28¢18]), we establish in
[23] the following theorem.

Theorem 3.4. Under the same assumptions and notations as ghmva neighbourhood
of each pointp € Ry such thatcorankAg(p) = 1, the model of M, Ag, N) is a product
of a Poisson—Nijenhuis manifold?’, A, N’) of odd dimensio2/ — 1,/ < n + 1, whose
Nijenhuis tensoV’ has a characteristic polynomial of tygey () = (A + f)Z~1, and of
a symplectic Poisson—Nijenhuis manifeld”, Ag, N”).

If p’is the projection op on M’ and df p) # 0,then there exists an open neighbourhood
U’ of p’ in M’ with local coordinatei(x;."), yyhi=1....m j=1...,2r,r1 > >
rm,yY = f —a',a = f(p’), centered ap’, such that

#=3 (L) (78

k— 13x2k 1 aka

=—O'+ad)d+H -Z' ®dy, (79)

where H' and Z’ are given in these coordinategespectivelyby Egs. (69) and (71)If
df(p’) = 0, expression$78) and (79)and also those off’ and Z’ do not include coordi-
natesxy’ andy’.

If p” is the projection ofp on M”, the normal form of the tensor fields; and N”, on
an open neighbourhood @f’ in M”, is presented bfheorem 3.3

The model oflM, Ag, N) is completely determined by the family of the elementary
divisors ofN.

(In formulee (78) and (79)m andr;, i = 1,...,m, have the same meaning as in
Theorem 3.J)

Let(x)),k=1,...,dimM”", be a system of local coordinatesMf’, centered ap”, in
which (A7, N”) has the model’s expression (Theorem 3.R Because of the identification
(M, Ag, N) = (M', Ay, N') x (M", Ag, N”) on an open neighbourhoddof p in M, the
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homothety vector field is written, in the local coordinate product system}"), Vi x),
i=1....mj=1....2ri,r1>->rpk=1...,dmM" of M =M x M", as

T = T/ + T//7
where
m  2r 5 5
T = Z Za; &',y x") P +b(x',y; x”)a—y/ and
i=1j=1 J
dim m” 3
T// — c x/’ /; x// _
Y aky o7
k=1

are, respectively, vector fields tangentWd andM”. Since(Ag, N, T) is a homogeneous
Poisson-Nijenhuis structuréy Ao = —Ag, Ly N = 0 andLr Ay = — A1, A = NAS.

But, A; = A; + A7, i =0, 1. Hence Lt Ag = — Ag if and only if
L1 Ay = [T, Al = — Ay, (80)
Ly A =[T", Af] = — A}, (81)
Ly A+ Lyn Ay = [T, AG+[T", Ag] =0, (82)

andLr A1 = —A;j if and only if

LAy =[T', Al = —A], (83)
Ly A] =[T", A]] = —A], (84)
Ly A] + Ly Ay =T, A]]+[T", A}l =0. (85)

SinceAj is nondegenerate an”, Egs. (81) and (84yield

Ly#N" =0. (86)
Therefore,L7 N = 0 if and only if

LN + Ly N" 4+ LN = 0. (87)

Furthermore, in the coordinate product system considered above, the matricial expressions
of L++N’, Ly+N” andLy»N' are, respectively, of type:

LN — A B LN — o r , (0 O
N = , N" = and Lp/N' = .
0 0 0 0 A 0

So,Eq. (87)holds if and only if
LN +LpN"=0 and LyN' =0. (88)
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Taking into account the second conditionkf. (88) Eqg. (85)implies
LpAf+ LAy =LpN" - Ag+ N" - Ly Ag+ LyN'- Ag+ N' - Lyr Ay
=Ly N A+ N"-LpA§+N' - Ly Ay =0. (89)

Considering the local expressions of the terms of left membEro{89) we conclude that
this equality holds if and only if

LpN"-Ag+N'"-LrnAg=0 and N”.LpAg=0.
So, out of the singular locus of”,

LyAg=0 (90)
and, because dq. (82)

Lr»Ap=0. (91)

After a direct computation, we find that, in the considered local coordinate product system,
Egs. (90) and (914re expressed, in terms of matrices, respectively, as

a(a’, b)
J
Ag - (W =0 (92)
and
, ock
Ay (=—=—)=0. (93)
ax’,y")
Since Ag is nondegenerate ol”, Eq. (92)means that, out of the singular locus &f,
the functional coefficients df’, aj.,i =1....mj=1...,2ri,r1 > -+ > 1y, andb,

only depend on the’ andy’ coordinates. Because of the continuity of these functions on
M, the above result hold on any neighbourhoog dfi M. On the other hand, since the re-
striction of Aj, to its symplectic leaves, defined by the equatibr= constant, is inversible

on these leave&q. (93)implies that, out of the singular locus &, the functional coef-
ficients of 7”7, ¢k, k =1, ...,dim M”, only depend on the’ andx” coordinates. Because
these functions are continuous & the above conclusion holds on any neighbourhood of
pinM

Of courseT” andT” are, respectively, homothety vector fieldgaf, N) and(Ag, N”).

Let So be the symplectic leaf ofig throughp. Since(M, Ao, N) = (M', Aj, N') x
(M", Ag, N"), on a neighbourhood gf, and Ag is symplectic onM”, So = Sy x M”,
wheres;, is the symplectic leaf oft;, throughp'. In the product coordinate(sx;."), V' x)),
i=1,....mj=1...,2r,r1>--->rpk=1,....,dmM’', of M = M' x M",
So and S; are determined by the same equatign= 0. The functions((x}"); X)), i =
1L...om,j=1....2r,rn> - >rk=1...,dmM", define onSo = Sy x M"
a coordinate product system.Tf = T’ 4+ T” is tangent toSp, i.e. b(x’, y’; x”) = 0,
thenT’ is tangent taS;, and reciprocally. In this cas&; is a homothety vector field of
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the symplectic Poisson—Nijenhuis structure induced®hy (Ag, N) and so isT’ for the
symplectic Poisson—Nijenhuis structure inducedpby (Ap, N'). The recursion operator
of the latter structure is 0-deformable and its characteristic polynomi@l is f)%~2.
Consequently, in the considered case, the local expressith of coordinates{x}"), i =

1....m,j=1...,2r,r1>--->ry,0f S is
2 0
I'=3.7 Z(szc laT)’ (94)
X1 i=1 \k=1 1

modulo the addition of an infinitesimal Poisson biautomorphistagf A?), A’l# = N’Ag‘,
tangent toS; (cf. Eq. (74)and the remark that follows). The local expressior7df in
coordinatesx;), k = 1,...,dimM", of M”, is well determined byrheorem 3.3

4, Part Il

In the third and last part of this work, we are going to study the problem of constructing
a normal form of the tensor fields of a Jacobi—Nijenhuis structw®, Eg), N), N =
(N,Y,y,g), defined on a finite dimensional differentiable manifafd In order to estab-
lish these forms, we consider the homogeneous Poisson—Nijenhuis strustur®, 7)
defined onM = M x R from ((Ag, Eg), N) (cf. Proposition 2.1% In the case where
Ag is of maximum rank onV/ (or on an open dense subsetMﬁ andT is tangent to the
symplectic leaves ofig (of course, this always happen wheg is symplectic), the local
model of (Ag, N, T), on an open neighbourhood of a regular pginof M with respect
to N, is well determined, according to the parity of the dimensioMofoy Theorems 3.3
and 3.4and by formula94). Then, taking: (i) an one-codimensional submanifslaf M
transverse to the homothety vector figld(ii) a functiona defined on a tubular neighbour-
hoodU of X in M, equal to 1 on® and homogeneous of degree 1 with respedt tand
(i) the pair (Ag, Eq) that defines ori/ the Jacobi structure which isconformal to the
Poisson structure’s model, and computing: (i) the projectioﬁ/l%t E"g) on X parallel to
the integral curves of the model f and (i) from the model oV, the Nijenhuis operator
induced onX', we obtain onX’ a Jacobi—Nijenhuis model structure (Bf.oposition 2.1},
that, fromProposition 2.15is equivalent to a Jacobi—Nijenhuis structureMnconformal
to the one given initially. In this way, we end up establishing, on a neighbourhood of a point
p of M, which is the projection o of a regular poinip of M with respect taV, a model
of a structure that is conformal t0Ag, Ep), NV), in the cases where:

1. M has odd dimension andig, Ep) is transitive onM,;

2. M has even dimension, say:,2and the characteristic le@fy of (Ag, Eg) throughp
has odd dimension, equal ta 2- 1, fact that impose$ = 9/dr to be tangent to the
corresponding symplectic leaf afy (cf. Section 2.2.

(We remark that the set of points M that can be seen as projections of regular points
of M with respect taV, is an open dense subset/t because ; is an open dense subset

of M.)
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The case wher@/ has even dimension anidig, Eo) is transitive onM is going to be

treated separately iBections 4.2

4.1. Local models of odd-dimensional Jacobi—Nijenhuis manifolds

Let ((Ag, Eo), N), N := (N, Y, v, g), be a transitive Jacobi-Nijenhuis structure de-

fined on a(2n + 1)-dimensional differentiable manifolt and(Aq, N, T) its associated
homogeneous Poisson—Nijenhuis structure¥br= M x R (cf. Proposition 2.1§ Since
Ag = e—’(Ao + (3/9t) A Ep), (¢ is the canonical coordinate on the fac®y, is nonde-
generate orM, on a neighbourhood of each regular pojinte M with respect toN =
N+ Y ®dt+ (3/91) @ y + g3/t ® dt, the model of M, Ag, N, T) is a finite product
of homogeneous symplectic Poisson—Nijenhuis manifolds whose recursion operator has
as characteristic polynomial a power of an irreducible polynomialTb&orem 3.8 In
what follows, this decomposition @i, Ao, N, T) is going to be referred as thimodel
decomposition’df (M, Ag, N, T). Letp be the projection op on M. Becausd’ = (9/01t)
istransverse t®/ at p, atleast one of the components of the decompositidhisfransverse
to M at p. Therefore, in order to construct a local model @i, Eg), V), we distinguish
and we study separately the following cases:

1.

The recursion operator of the homogeneous symplectic Poisson—Nijenhuis structure
of the factor of the “model decomposition” @, A, N, T') corresponding to the
considered component df, i.e. the component that is transverseMoat p, has a
characteristic polynomial of typ@. + )%, q <n + 1.

. The recursion operator of the homogeneous symplectic Poisson—Nijenhuis structure of

the factor of the “model decomposition” of1, Ao, N, T) corresponding to the consid-

ered component df, i.e. the component that is transversafait p, has a characteristic
polynomial of type(A® + fA 4 h)?, g < n + 1, with 2 — 4h locally strictly negative.

(In order to avoid any confusion, in this paragraph, we will not giss a coefficient of

the characteristic polynomial of the recursion operator because it appears as a coefficient
of N.)

4.1.1. Study of Case 1

WedenotebYM’ N’ T)thefactorofthe“modeldecomposmon"(M Ao, N, T)

whose homothety vector field is transverse ta/ at p, and we suppose that its recursion
operatorN’ has a characteristic polynomial of typg, (L) = (A + )4, q <n+1.Then,

on a neighbourhood qf in M, (M, Ao, N, T) = (M', Ay, N', T") x (M", A, N", T"),
where(M”, Ag, N”,T") is the product of the other factors of the “model decomposition”
of (M, Ao, N, T). If p and p” are, respectively, the projections pfon M’ andM”, the
normal form of(M’, A o N’,T"),0ona neighbourhood g¢f in 1\71/, is given byTheorem 3.1
and Eq. (74) and the one ofM”, A3, N”, T"), on a neighbourhood 0" in M”, by
Theorem 3.3

Now, we suppose thdf(p’) # 0,andwe consider alocal coordinate sys(eh;i), ¥1: V),

i=1....m j=1...,2rr> > ry, of M, wherej, = f —a',a' = f(p'),
centered ap’, in which the tensor fieldsg, N’ and7"’ are written as their mode(§7), (68)
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and (74) An one-codimensional submanifold &f , transverse td@"’ and passing by’, is

the hypersurfac&’ of M’ defined by the equatioijl 0, (itcan also be seen as the hyper-
surface of level 2/3 of the functional coefﬁmer# +2/30fd/0x /11 in the considered model
expression of ). Moreover, a functiom defined on a well chosen tubular neighbourhood
U’ of X’ in M’, which vanishes nowhere dii’, equal to 1 onX’ and homogeneous of
degree 1 with respect tb/', is the function

a((¥)), 1, ) = 3% + 1.

We denote byr” : U’ — X’ the projection parallel to the integral curvesidt by T'sin' :
TxU' — T X' the associated vector bundle projectiorfgf U’ onto its subbundlg” X’
by 'Tsin’ : T2 — T4, U’ the transpose of s n’, and by (Ts")n the restriction of
Ts 7’ to the horizontal subbundlEE’ of TE/U’, which is a bijection.
Let (Agyr: Egp): Np), Ny i= (N, Y50 v50. 8'50), be the Jacobi-Nijenhuis struc-
tureinduced oz’ by the homogeneous symplectic Poisson—Nijenhuis structifjeN’, 7”)
of M’ (cf. Proposition 2.12 One has

Ay = Ty 0 @A)\ g o' T, (95)
Epy = Ty (Ag (da)] ), (96)
Ny =Ty’ o N'|zr o (Tt (97)
Yy = To' (N'T)] ), (98)
8 -, d 3
vh = (Nda)|_ —((Ndals, —| )difls., (99)
b)) oxy 5
gy = (dal g, (N'T")|5). (100)

Their computation yields:

3 r1 m ri a
~r1 ~ ~
/OE’ = _E |:ZX/ ~/l + Z <ngk 17 <, ~/l ) + yia_j}:,l-i|
k=1

k=2 X2k-1 i= Xok—1

Uy (SR 9 ) 9
~/1+Z ~/1 ~/l+Z<Za~/z A )+_"’/\W’
2k 2

im2 \i=1 9*2%-1 %3, a1

(101)

3 0
Epp = S— (102)
2955

=7 ®Ol2/

3
Ny =Gy +a)ds — Ty @di5 + Hy) + —
2 0y1

3 .
+ (5 » = b) ® d3y, (103)
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where—(3/2)Ty, is the projection 0fd/dx}})| s on T X’ parallel to7”,

m ri
a
-1 - ~
E :X/Zk 151 P +Z<§ :x/zlk 19=n 9%l >+y:/l'3§:/]_’ (104)

2k112 Xok—1

ri—1 P ri—1
~1 ~/1
%:z(% @Q+z(ﬂ ﬁ)

Xok+2

m ri— 8

i=2 | k=1 Xok— 1 Xok+2

1
= dif+ Y [( )fgkdiéi v+ (k4 3) 207
k=
m ri 1
+> ( k s ;zgkd;zgk L+ (k + —) i ld;gk]) (106)
—~ 2

i=2

& 1 3 & 1 3
/ ~71 ~71
ZE/:Z[ k+§ ka 18"'/1 :|_Z|:<k_2) 2k8~/1:|

k=2 Xok—1 k=1 X2k

ri
z( [H ot _(k_%)fgk%}), (107)
i=2 \k=1 x2k1 2 0X

ri—

~/1 /1 9 3~/1 /1 9
Z x2k+1 M8 N1 ) oo T RN -1
k=2

Xok—1 2ri—1
m ri—1
. 3 0
~/i ~/1~r ~/l =~/
#30| 5 (s 5585) g |- 20 55 gy
i=2 | k=1 x2k 1 90X, _1

<—Jz’21+ > (k——) X5 iR
¢ ~/ ~/ 3~/1 ~/ 0
+ Z Z Yok—1¥2 | 5% N ﬁ (108)
k=1

i=2
r 31 ~/
Vs = z(dx?’ — dyz), (109)
gy = —(h+a) + x5 (110)

(Taking into account the remark®heorem 3. 1if df(p’) = 0, the obtained local expressions
of the tensor fields of(Agy.,., Ejy), N'g.) do not include the; andy;, coordinates.)
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Now, we consider a local coordinate syst&frof A", centered ap”, in which(Aj, N”,
T") has the expression of its model (SBeeorem 3.} and the product syste(v(li;."), AR
Vo XM i=1,...,m, j =1,. 2r,,r13~-~zrm,ofM:M’xM”,whereyéz

f-a,a=fp ) centeredaﬁ p’, p"). Furthermore, we take the submanifdld=
X' x M" of M = M’ x M" of codlmen5|on 1, transverse 16 + T”, defined, of course,
by)c1 =0.

Let ((Aox, Eox), Nx), Nz = (Nx, Y5, s, gx), be the Jacobi-Nijenhuis structure
induced onz = X¥’x M” by the homogeneous symplectic Poisson—Nijenhuis product struc-
ture(Ao, N, T) = (A, N, T") + (A}, N, T") of M = M’ x M" (cf. Propositions 2.12
and 2.13. FromProposition 2.14one has

Aoy = Apys + AL —T" ANEjy, and Eox = Ejy., (111)
Ny =Ny +N' - T"® vy, (112)
Ys =Y + (N” — g 1d, M) . (113)
Vs = Vs, (114)
gx =gy (115)
The local expressions of the tensor fieldsl .., E(y), Ns), Ny, i= (N5, Y} % Yoo

g’s»), in the coordinates of’, are given byEgs. (101)—(11Q)and those of A, N",T"),
in the considered coordinate systéfhof A", are known byrheorem 3.3Hence, formulee
(111)—(115)give us the local expression of the tensor field§(efos, Eox), Nx), N5 =
(Nx,Ys,ys, gx), in the coordinate product systemél, )E/z’,"m V1. 95 X"y of ¥ =
X' x M.

4.1.2. Study of Case 2

We work as inCase 1We denote byM’, A, N', T') the factor of the “model decompo-
sition"of (M, Ao, N, T) whose homothety vector fiell’ is transverse ta/ at p, and we
assume that its recursion operafét has a characteristic polynomial of ty@g;, (A) =
A2+ fr+ h)?,q <n+ 1, with f2 4h locally strictly negative. Then, on a neighbour-
hood of 5 in M, (M, Ao, N, T) = (M', Ay, N', T") x (M", A§, N", T"), where(M", A,
N”, T")is the product of the other factors of the “model decompositiortMf Ao, N, T).
If 5/ and p” are, respectively, the projections pfon M’ and M”, the normal form of
(M', Ay, N', T’), on a neighbourhood g¥ in M’, is given byTheorem 3.2andEq. (77)
and the one ofM”, A3, N”, T"), on a neighbourhood gi” in M”, by Theorem 3.3

Let ((F7), iy, iy, (5;), 04, 09), j = L, ooom, I = 1,...,2rj, 711 > -+ > 1y, bE @
local coordinate system af’, centered ap’, in which the tensor fieldgl;, N’ and7" are
expressed as their model&. (75)—(77). To the role of an one-codimensional submanifold
of M’ transverse td@”, we take the hypersurfacg’ of M’ throughp’ that is defined by the
equation)E’ll = 0. A functiona defined on a well chosen tubular neighbourh@tcf X’
in M’, which never vanishes oi’, equal to 1 on%’ and homogeneous of degree 1 with
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respect tdl”’, is the function
a((xl ) ’417 u27 (yl ) Ul’ Uz) = 2)61 +1

We denote byt : U’ — X’ the projection parallel to the integral curvesidt by Ts 7’ :
TsU' — T X' the associated vector bundle projectiorfef U’ onto its subbundlg X,
by 'Tsin' : T*Y' — T;,U’ the transpose of xv7/, and by(Ts/z’) the restriction of
Ts 7’ to the horizontal subbundEX’ of T U’, which is a bijection.

Let (Agss, Egs) - Ny), Ny = (Ng, Y5, v5. gs), be the Jacobi-Nijenhuis
structure induced or®’ by the homogeneous symplectic Poisson—Nijenhuis structure
(A, N, T’y of M’ (cf. Proposition 2.12 The tensor fields defining this structure
are given, respectively, by the formulé5)—(100) In this case, their computation
yields

N = zx@m,l +z(zf;f“~,, )
1

Xok—1 j=2 \k=1 Xok—

! ., 0 ., 0
+Z<Zy2]k 13~,, >+“/137+U/137
Yak—1 1 1

j=1 \k=1

3 19 3 "m0 8 3
A +Y S A —+ -—— A
x5 ;43);/2}(_1 %5 2. p v, 0%

2k j=2
m rj
0 10 B 190 d
_Z<Z_ ~/j N/j)+za~//\37_za—~//\a—~/, (116)
J=1 \k= aka 1 Uy ot V1 90
39
Eoyi = g7=1 117)
805
3 l ~/l ~ =/
N = (M2+a)|d2/ - §T2/®d +H~/Z~/ _(U2+b)121

T - 3 . .
— (V5 + b/)ETg, ®djt + (ET)/:, - Z;,E/> ® (dity + dvp) + Hy,

— Z5 ® (diiy — dip) + ~,®(oz,2,— ) + ~,®(a,2,+a,) (118)

ou

where—(3/2)TL, is the projection ofd/dx /1)|);/ onT X’ in the direction ofl”,

Ty = Zfé}c 1521 Priy +Z(Zié]k Ly )"'Z(Z%ﬁ o5 )

j=2 \k=1 Xok—1 j=1 \k=1 Yok-1

+ﬁ/i +f/i
You, T tavy
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2 2rj
T = - 9 d~/1 9 ~/1 e d~// 9 )
ZV_Z a)"}ll ® - ax‘l/l Z ® ai// yl
l

the tensor fields?/, ., o%, ., Z% ., have, respectively, the expressiqi5)-(107) and
Hy’ ocf,, Z; those that appear ihheorem 3.2

ad - a - a - 3 ~
_a_ﬁ’l(g)dv/l_8_5/2®dv/2+8_17’1®du/1+8_ﬁ/2®du/2’

ri—1

3 3 3 3 e 3
Yy = Z [xé}wrl + (B + B _q — (x3 + (05 + D) %5 1] Py
k=2 X2k-1
m Fj—
2.2 [xz,c+1+<vz+b>&;§< - —<~’1+<vz+b>~’1>f;2 1]
=2 k=1

0

~/j
Xok—1

m

- - 3 . e~
+ [(vg+b)y;fr —E(x§1+(v2+b)/1)x/2]r }
=1

a
~/J
95,1

~.

+

1

__(v2+b)+ 1 _(~/1+(U2+b)~/1)~/1:| —
ayy

[any

~
=

n
| M

T
N

5 5 5 L 0
[ (B + D)o g + 541 — <x3 + (5 + B35 1} =
V51

[y

rji—

B ~ i i 3 5 5 5
2. [—(v’z + BTy + T — 5+ @+ DI 1}
1

0

~/_]
Yor-1

+

Ms

2

~.
|

d
~/j
aerj—l

~/1+z( D) 3 (- 1) ot

j=2k=1

Ms

k=
~/] 3 ~/ ~/]
+ —(@W + b X5 1~ —(x + (@ + b)), )yzr -

~.
Il
N

N - - ~ . e d
—ZZ( )y;z 135 + (3% +b/>——< 3+ @+ B30 | oo
1

j=1k=1

SN CHE R 3 o (B E

j=2k=1

+ZZ( )%’k 1o — @y (B + B — —<~’1+ (@ + B3,

vy’
j=lk=1 1

(119)
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Vi = 3(dX5 + (0 + )d5t — dity — dih), (120)
gy = —(iiy+a) + 3(F + @+ BHih. (121)

Afterwards, we consider a local coordinate syst&hof M”, centered ap”, in which
(/i” N”,T") has the expression of its model (s€keorem 3.3 and also the product
system((xlf) iy, iy, (yl ), 07,0587, =1 ... om 1 =1,...,2rj,r1 = -+ = 1y,
of M = M’ x M", centered ap = (7', p"). Moreover we take the submanifold =
X' x M" of M = M’ x M" of codimension 1, transverseTd+ 7", defined, of course, by
#l=o.

1Let ((Aox, Eox),Ns), Nx == (Ng, Y5, ys, gx), be the Jacobi-Nijenhuis structure
induced onX = X’ x M” by the homogeneous symplectic Poisson—Nijenhuis product
structure(Ao, N, T) = (Ay, N', T") + (A§, N", T") of M = M’ x M", (cf. Proposi-
tions 2.12 and 2.4 FromProposition 2.14ve deduce the expressions of the tensor fields
of (Agx, Eox) and of Ny = (Nx,Ys,ys, gx) that are represented, respectively, by
formulee(111) and (112)—(115) Then, taking into account the already established local
expressions of Ay, Ejy.) and of Ny, := (N, Yy, y5.. g5) in the coordinates of’
(see relation&116)—(121), and also the local expressiong df/, N”, T") in the considered

coordinate syster’ of M” (cf. Theorem 3.} from Egs. (111)—(115)ve may deduce the
local expressions @fAoy, Eox)andofNs := (Nx, Ys, vs, g5) inthe~coordinate product
SYStem(iy', ..., X5 iy, iy, s - .., Fop L 03 Ui §7) of ¥ = 57 x M.

In conclusion, we present the following theorem.

Theorem 4.1. Let ((Ag, Eg), N), N := (N, Y, y, g), be a transitive Jacobi—Nijenhuis
structure defined on & + 1)-dimensional differentiable manifolst, (Ao, N, T) the
associated homogeneous symplectic Poisson—Nijenhuis structdfe-ed/ x R, andp a
generic point of\, viewed as the projection aif of a regular pointp of M with respect to
N.Alsq, let (M', Ay, N', T') be a factor of the “model decomposition” 687, Ao, N, T)
whose homothety vector field is supposed to be transverse @ at p, ¥ a subman-
ifold of M through 5 of codimension 1 and transverse Tg and ((Aos, Eox), Nx),
Ny := (Nx, Yz, ys, g5), the Jacobi-Nijenhuis structure induced éhby (Ag, N, T).

If the characteristic polynomial o’ is of the typePy (A) = (A + f)? (respectively
Py(W) = (A2 + fr+ )7, with f2 — 4h locally strictly negativl ¢ < n + 1, then
there exists a neighbourhood pfin X with a coordinates systeroentered ap, in which
the tensor fields ofAox, Eox) and of Ny = (Nx, Yy, ys, g5) are written respec-
tively, asEgs. (111)and (112)—(115) taking into account format (101)—(110)réspec-
tively (116)—(121). The structure(Aox, Eox), Nx) is locally equivalent to a conformal
structure to((Ao, Eg), NV).

4.2. Local models of even-dimensional Jacobi—Nijenhuis manifolds

Let (Ao, Eo), N), N := (N,Y,y,g), be a J~aco~bi—~Nijenhuis structure defined on a
2n-dimensional differentiable manifold/ and (Ao, N, T) the associated homogeneous
Poisson—Nijenhuis structure defined dh= M x R (cf. Proposition 2.1% We assume
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that the Poissonizationg = ¢~ (Ag + (3/81) A Eg) (¢ is the canonical coordinate on
the factorR) of (Ao, Eo) is of maximum rank on an open dense subseWoE M x R.
Let p be a generic point oM, i.e. p can be viewed as the projection &h of a regular
point p of M, with respecttaV = N + Y ® dt+ (3/0r) ® y + g(3/81) ® dt, such that
corankAg(p) = 1. Our aim is to construct a model 6640, Eg), A) on a neighbourhood
of p. We remark that the characteristic l&af of (Ao, Eo) throughp is the projection on
M, parallel to the integral curves @f = (3/91), of the symplectic leafy of Ag throughp
(seeSection 2.3, of course, dimSy = 2. Then,

o if T =(3/31)is tangent thg, Co has dimension2— 1, and we have that rankg(p) =
2n — 2 andEo(p) ¢ J A% o(p);

o if T = (9/0t) is not tangent tdg, Co has dimension2, i.e. d|mCo = dim M, conse-
quently rankAg(p) = 2nandEg(p) € J A% o(p),andthe restriction t§o of the projection
of M on M parallel to the integral curves @f = (3/d1) is a local diffeomorphism of
onto Co. Then, in this cas€,Ag, Ep) is transitive on a neighbourhood pfin M.

Hence, in order to establish a model©fig, Eg), A) on a neighbourhood gf, we will
study separately the above mentioned cases.

4.2.1. Study of the case wherg: is tangent taSo
Inthis case, for the construction of a normal fornt@fo, Eg), NV) on aneighbourhood of
p, we apply the technique developed in the previous paragraph. Fneorem 3.4nd the
study that follows, on a neighbourhoodfn M, the model of M, Ao, N, T) is a product
of a homogeneous Poisson—Nijenhuis manifditl, A}, N’, T’) of odd dimension 2— 1,
I < n + 1, whose recursion operatdt has a characteristic polynomial of typg; (A) =
(»+ £)Z~1 and whose homothety vector fiefd is tangent to the symplectic le&f of A
passing by the projectiof of 5 on M’, and a homogeneous symplectic Poisson—Nijenhuis

manifold (M”, A}, N”, T"). The normal form of(M’, Ay, N', T') is well described by
Theorem 3.4ndEq. (94)and the one ofM”, Aj, N”, T") by Theorem 3.3In whatfollows,
this decomposition of M, Ag, N, T) will be referred as thémodel decomposition”of
(M, Ag, N, T). SinceT = 3/t is supposed to be transverseMbat p, we have that at
least one of its components is transverséftat p. We distinguish and we treat separately
the following cases:

1. The component df that is transverse tf at p is 7"
2. The component df that is transverse t&f at p is T”.

Casel. Wetakethefactaid’, A, N', T') of the “model decomposition” ait, Ao, N, T)
that possesses the properties stated above and whose homothety veciBiisislgbposed
to be transverse t&f at p. We assume thaif(p’) # 0, and we consider a local coordinate
system((;z;f), Vi=1,....mj=1...,2r,r>--->ry, of M, wherey/ = f — &,

= f(p), centered af’, in which the tensorfieldﬁb, N’ andT’ are written, respectively,
as their model78), (79) and (94)For the role of an one-codimensional submanifold of
M’ transverse td"’, we take the hypersurface’ of M’ defined by the equatiafy! = 0;
of coursep’ € ¥’. A functiona defined on a well chosen tubular neighbourh@taf %’
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in M’, which never vanishes obi’, equal to 1 onz’ and homogeneous of degree 1 with
respect tdl”/, is the function

a(@), ) =35 +1

Let (Agsr E(x)  Ns), Ny, i= (N5, Y5, v5, &50), be the Jacobi-Nijenhuis structure

induced onX’ by the homogeneous Poisson—-Nijenhuis struc(w/@ N', T’y of M’ (cf.
Proposition 2.1P Developing the same reasoning as in Section 4.1, we obtain

m
Apgr=—75 [Ziﬁ}c Py +Z<Zf5k iy )}

Aok—1 i=2 \k=1 Xok—1
) R F) Uy AR )
A + — A — + - A , 122
axst k; XL | 0Fh ; (,; axy, 9%y (122)
39
E{)E, = E@’ (123)
( Id 3 ~/l / 3 [ ~/ 124
_y+a) 2’_5 2/®d HE/+ ETE/ ZE/ ®dy, ( )

where—(3/2)T4,, is the projection 0f/3i7| - on T X’ parallel to7”,

z% +z(zxsk ! )

Yu-1 =2 \km1 Xok—1
andHy,, Z', are given, respectively, bygs. (105) and (107)
ri—1
3 3 d
~/1 ~r1~ =11
Y;E’ZZ(x/Zk+l 2’“/3 xzk Voot gl 2 X3 x /2}’1 1ot
k=2 Xok-1 X2r—-1
- - - a
+Z Z(X/Ztk+l xélxélk Doz ) Z xél 5, 1 1 (125)
i=2 = — 2r -1
Ve = 3(d%5 — dy), (126)
gy = -G +a) + 3x5. (127)

(If df(p") = 0, the obtained local expressions of the tensor fields of the strugtafg. ,
Eps), N's) do notinclude the! andy’ coordinates.)

Now, we consider a local coordinate syst&fiof M", centered ap” (we denote byp”
the projection ofp on M”), inwhich(A7, N”, T") has the expression of its model presented
by Theorem 3.3and also the product syste(r@f), Viih,i=1,....m,j=1...,2r,
F1> > 1y, Of M = M' xM" wherey = f—a',a’ = f(p), centeredaﬁ p ;3”).
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Moreover, we consider the hypersurfaEe= X’ x M” of M = M’ x M" defined by the
equationi;! = 0. Of course, it is an one-codimensional submanifoldfot= M’ x M/,
passing byp, transverse to the homothety vector figlt+ 7.

Let ((Aox, Eox), Nx), Nz == (Ng, Y5, ys, gx), be the Jacobi-Nijenhuis structure
induced onX = X’ x M” by the homogeneous Poisson—Nijenhuis product structure
(Ao, N, T) = (Ay, N', T') + (A}, N, T") of M = M’ x M", (cf. Propositions 2.12 and
2.14). FromProposition 2.14we deduce the expressiofisl1)—(115)of the tensor fields
of ((AOE, Eox), Nx). Since we know the local models 6fAyy., Ejy). N5, Ny, =
(N5, Y5, ¥50n 8 2,),|nthecoord|nate6c2 )ng , ¥") of X’ (cf. relationg122)—(127),

and of (AJ, N, T") in the considered coordinate systerh of M” (cf. Theorem 3.3
(111)- (115p|ve us the local writing o((Ao);,Eo;) Nx),Nx = (Ng,Ys,ys, g5),in
the local coordinate product systedy', ..., ¥ , 3'; ¥") of ¥ = &' x M".

Then, we are lead to the following theorem

Theorem 4.2. Let ((Ag, Eg), N), N := (N,Y,y, g), be a Jacobi-Nijenhuis structure
defined on a 2n-dimensional differentiable maniftdcand (Ag, N, 7) the associated ho-
mogeneous Poisson-Nijenhuis structuredn= M x R. Suppose thatAg, Eo) is such
that its Poissonizationig is of maximum rank on an open dense subséct M x R.
Let p be a generic point o/, viewed as the projection oi/ of a regular pointp e
M, with respect toN, such that coranklo(p) = 1, and let Sy be the symplectic leaf
ofAg through p. Also let(M’, A6, N’, T') be the odd-dimensional factor of the “model
decomposition” of M, Ag, N, T) whose homothety vector fieltl is assumed to be trans-
verse toM at p, ¥ an one-codimensional submanifold &f, passing byp, transverse
to 7, and ((Agx, Eox), N;) /\/g ‘= (Nx, Yz, vz, gx), the Jacobi-Nijenhuis structure
induced onX by (Ag, N, T). If T is tangent taS, then there exists a neighbourhood pf
in X with a system of coordinatesentered afp, in which the tensor fields @fAox, Eox)
and of Vs := (Nx, Yy, v5, gx) are written respectivelyasEqgs. (111)and(112)—(115)
(taking into accoun{122)—(127). The structure((Aoyx, Eox), Nx) is locally equivalent
to a conformal structure to(Ag, Eo), N).

Case2. Takethefacto(M”, Aj, N”, T") ofthe “model decomposition” ai¥?, Ao, N, T)

which is a homogeneous symplectic Poisson—Nijenhuis manifold whose homothety vector
field 7" is supposed to be transverseMoat p. Let 5” be the projection of on M”. From
Theorem 3.30n a neighbourhood g’ in M”, (M", Ay, N”, T") is identified with a finite
product of homogenous symplectic Poisson—Nijenhuis manifolds whose recursion operator
has a characteristic polynomial that is a power of an irreducible polynomial. $itée
transverse ta/ at p, at least one of its components, in the considered decomposition, is
transverse td/ at p.

Let X" be a submanifold o#” of codimension 1, passing k¥’ and transverse t6”,
and((Al g, Egsn)s N'gi), Nigy i= (NS, Y, v5, €50, the Jacobi-Nijenhuis structure
induced onx” by the homogeneous symplectic Poisson—Nijenhuis stru(:ﬂ(fel\?”, T")
of M” (cf. Proposition 2.1p The local model ot(Agsr» Egsin)s N'i) is well known from
Theorem 4.1
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Now, we consider the submanifolB = M’ x X" of M = M’ x M", which is, of
course, one-codimensional and transvers@&te- 7”. Let ((Aox, Eox), Nx), N =
(Ns,Ys, ys, g5), be the Jacobi-Nijenhuis structure induceddr= M’ x X" by the ho-
mogeneous Poisson-Nijenhuis product struatdig N, T) = (Ay, N, T')+(Ag, N”, T")
of M = M’ x M" (cf. Propositions 2.12 and 2.L4romProposition 2.14

Ny =N+ Nf —T' ® v, (129)
YE = (N gzwldTM/)T + Yg'//, (130)
Ys = Vs (131)

Then, if#’ is alocal coordinate system &f’, centered af’, in which the tensor fieldé(), N’
andT’ are written, respectively, &s. (78), (79) and (94and ifx5., is a local coordinate
system ofZ”, centered ap”, in which the tensor fields d{ A{y... Ejs.), Ng,), Ny, =
(NS, Y5, yg,,, g's»), have the expr_essions of their models (@fieorem 4.}, formulee
(128)—(132)ive us the local expression@fAox, Eox), N):),N): '=(Nx,Ys,vs,85),

in the local coordinate product syste#f; x7.,) of ¥ = M x 2.
So, we get the following theorem.

Theorem 4.3. Let ((Ag, Eg), N), N := (N,Y,y, g), be a Jacobi-Nijenhuis structure
defined on a 2n-dimensional differentiable manifold M &nd, N, T) the associated ho-
mogeneous Poisson-Nijenhuis structuredn= M x R. Suppose thatAg, Eo) is such
that its Poissonizationig is of maximum rank on an open dense subs#fef M x R. Let

p be a generic point oM, viewed as the projection ol of a regular pointp € M, with
respect taV, such thatcorankAo(p) = 1, and letSp be the symplectic leaf ofo through
p.Alsa let(M”, A”, N”, T") be the homogeneous symplectic Poisson—Nijenhuis manifold
of the “model decomposition” ofM, Ao, N, T) whose homothety vector fiefd’ is sup-
posed to be transverse 1 at p, ¥ an one-codimensional submanifoldiaf passing byp,
transverse td’, and ((Aox, Eos), Nx),Ns := (Nx, Ys, vs, g5), the Jacobi—-Nijenhuis
structure induced otX by (Ao, N, T). If T is tangent taSo, then there exists a neighbour-
hood ofp in X with a system of coordinatesentered atp, in which the tensor fields of
(Aox, Eox) and of Nx := (Nx, Ys, vx, gx) are written respectivelyas Eq. (128)and
(129)—(132)taking into account the model expression @i, Ejx..). N's.,) presented
by Theorem 4.1 The structure((Aoyx, Eox), Nx) is locally equivalent to a conformal

structure to((Ag, Eo), N).

4.2.2. Study of the case whexrgr is not tangent tcSo

Consider the same context as in the beginning of Section 4.2 and assume that the ho-
mothety vector field” = 8/dr of (Ap, N) is not tangent to the symplectic le&§ of Ag
through p. As we have remarked, in this cagéo, Eo) is transitive on a neighbourhood
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U of p in M. Then, there exists a differentiable functighe C°°(U, R) that vanishes
nowhere orU such that the Jacobi structt(mf, Eg), f-conformal to(Ag, Ep), is a sym-

plectic Poisson structure dn, ie.Al = f Ao is anondegenerate Poisson tensot/oand
E} = A%(df) + fEo = 0 (cf.[11,2,9).
Let ((AL, Eg),/\/f), N = (NT,Yf v/, ¢y, be the Jacobi-Nijenhuis structurg;

conformal to((Ag, Eo), V), and(Af, E{) the Jacobi structuref,-conformal to(A1, E1),
(A1, E1)* = No (Ag, Eo)*. FromProposition 2.11

Al ED = N o], EDY.
Then,
f f
E{ =N'E} =0,

(cf. Eq. (29), which means th&n{ = f A1 endowslU with a Poisson structure. Of course,

A{ is compatible WithAg. SinceAg is nondegenerate di, the pair(Af, A{) possesses
a recursion operator dli that is no other than the tensor field of type (1,1)

NJ"—N-Y@gf
f

of NV := (N1, Y/, y/, gf).Then,(Ag, N7 defines o/ a symplectic Poisson—Nijenhuis
structure.
Of course, the local model chAf, N7 is known byTheorem 3.30n the other hand,

since((Ag, Eg),./\/f), N .= (NI, Y/ ¢/, g7), is a Jacobi-Nijenhuis structure (see
Proposition 2.1}, its tensor fields verifyfEgs. (19)—(22and(25)—(27) BecauseEg =0
andAg is nondegerate olr, from

#
NTE§ = 257 (") + g7 E{.

we get thaty/ = 0 onU. Then (cf.Proposition 2.1},
df df
__t f
y=—N—+g'—.
f f

Taking into account this result, from

(133)

'INF(dg') = Lysy! +g/dd’,

we deduce thag/ is a functional proper value a¥/ or thatg” is constant or. So, ifs

is a local coordinate system &1, centered ap, in which (Ag, N7) has the expression of
its model (cf.Theorem 3.3 then, we can easily deduce from this the local writingsief
Eq = —A}(df/f), N, Y andg in this system and, froriq. (133) the one ofy.
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