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Local structure of Jacobi–Nijenhuis manifolds
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Abstract

After a brief review on the basic notions and the principal results concerning the Jacobi manifolds,
the relationship between homogeneous Poisson manifolds and conformal Jacobi manifolds, and
also the compatible Jacobi manifolds, we give a generalization of some of these results needed
for the contents of this paper. We introduce the notion of Jacobi–Nijenhuis structure and we study
the relation between Jacobi–Nijenhuis manifolds and homogeneous Poisson–Nijenhuis manifolds.
We present a local classification of homogeneous Poisson–Nijenhuis manifolds and we establish
some local models of Jacobi–Nijenhuis manifolds.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The notion ofJacobi–Nijenhuis structurewas introduced in[17] by Marrero et al. and
includes, as a particular case, that ofweak Poisson–Nijenhuis structurepresented in[18].
In this paper we propose a stricter definition of this notion, which generalizes in a natural
manner that ofPoisson–Nijenhuis structureintroduced by Magri and Morosi[6,14], in order
to study the completely integrable hamiltonian systems. The aim of this paper is to evidence
some aspects of the local geometry of this new structure, hoping that it will play a part as
important as Poisson, Jacobi and Poisson–Nijenhuis structures in the study of integrable
systems.

The paper is divided into three parts.
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Paragraphs 1–3 ofSection 2(Sections 2.1–2.5) are devoted to the review and some com-
plements of the essential definitions and results on Jacobi manifolds, conformal Jacobi
manifolds, homogeneous Poisson manifolds and compatible Jacobi manifolds. In para-
graph 4 we introduce the notion ofNijenhuis operator, while in paragraph 5 we define
the notions ofJacobi–Nijenhuis structure, conformal Jacobi–Nijenhuis structureandho-
mogeneous Poisson–Nijenhuis structure, and we establish a particular relation between
Jacobi–Nijenhuis manifolds and homogeneous Poisson–Nijenhuis manifolds. Precisely,
we prove that an one-codimensional submanifold of a homogeneous Poisson–Nijenhuis
manifold, which is transverse to the homothety vector field, possesses an induced Jacobi–
Nijenhuis structure (cf.Proposition 2.12), and that any Jacobi–Nijenhuis manifold can be
obtained in this way (cf.Proposition 2.16).

In Section 3(Sections 3.1–3.4), using the results of[21,23] concerning the local mod-
els of Poisson–Nijenhuis structures, we present a local classification of homogeneous
Poisson–Nijenhuis manifolds.

Finally,Section 4(Sections 4.1 and 4.2) describes some local models of Jacobi–Nijenhuis
manifolds. On the neighbourhood of a generic point of a differentiable Jacobi–Nijenhuis
manifold, we establish the existence of a local coordinates system in which the coeffici-
ents of the tensor fields that define the Jacobi–Nijenhuis structure are polynomials of degree
less or equal to 3.

Notation: In this paper, we denote byM aC∞-differentiable manifold of finite dimension,
TM and T ∗M, respectively, the tangent and cotangent bundle overM, C∞(M,R) the
space of realC∞-differentiable functions onM, Ωk(M), k ∈ N , the space of exterior
differentiablek-forms onM, andVk(M),k ∈ N , the space of skew-symmetric contravariant
k-tensor fields onM.

For the Schouten bracket (cf.[10,25]) and the interior product of a form with a multivector
field, we use the convention of sign indicated by Koszul (cf.[8,16]).

2. Part I

2.1. Jacobi manifolds

LetM be aC∞-differentiable manifold of finite dimension. We consider onM a bivector
field Λ and a vector fieldE which define onC∞(M,R) the internal composition law:

{f, g} = Λ(df,dg) + 〈fdg− gdf, E〉, f, g ∈ C∞(M,R). (1)

It is bilinear, skew-symmetric and it verifies, for allf, g, h ∈ C∞(M,R), the Jacobi identity:

{f, {g, h}} + {g, {h, f }} + {h, {f, g}} = 0

if and only if

[Λ,Λ] = −2E ∧ Λ and [E,Λ] = 0, (2)

where [, ] denotes the Schouten bracket. When conditions(2) are verified, we say that
the pair(Λ,E) defines aJacobi structureonM and that(M,Λ,E) is aJacobi manifold.
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The bracket(1) is called theJacobi bracketand the space(C∞(M,R), { , }) is a local Lie
algebra in the sense of Kirillov (cf.[3,5]).

In the particular case whereE identically vanishes onM, conditions(2) reduce to

[Λ,Λ] = 0,

i.e. in this case,Λ endowsM with aPoisson structure.
We denote byΛ# : T ∗M → TM and(Λ,E)# : T ∗M ×R → TM×R the vector bundle

maps associated, respectively, withΛ and(Λ,E), i.e. for all sectionsα, β of T ∗M and for
all f ∈ C∞(M,R),

〈β,Λ#(α)〉 = Λ(α, β) (3)

and

(Λ,E)#(α, f ) = (Λ#(α) + fE,−〈α,E〉). (4)

These maps can be seen, respectively, as homomorphisms ofC∞(M,R)-modules;Λ# :
Ω1(M ) → V1(M ) and(Λ,E)# : Ω1(M ) × C∞(M,R) → V1(M ) × C∞(M,R).

Finally, with any functionf ∈ C∞(M,R), we associate the vector field

Xf = Λ#(df ) + fE (5)

which is called thehamiltonian vector field associated withf .
The image ofΛ# and the vector fieldE define a completely integrable distribution onM,

called thecharacteristic distribution of(M,Λ,E), (cf. [1,3,5]). This distribution defines a
Stefan foliation ofM whose leaves, which are generated by the hamiltonian vector fields
(5), are called thecharacteristic leaves of the Jacobi structure(Λ,E) of M.

If, at every point ofM, the dimension of the characteristic leaf of(Λ,E) through that
point is equal to the dimension ofM, the Jacobi manifold(M,Λ,E) is said to betransitive.
According to the parity of the dimension ofM, there are two kinds of transitive Jacobi
manifolds:

1. If M has odd dimension,(Λ,E) is defined by a contact one-form (cf.[2,11]).
2. If M has even dimension,(Λ,E) is defined by a locally conformal symplectic structure

(cf. [2,11]).

The characteristic leaves of(Λ,E)are themselves transitive Jacobi manifolds (cf.[2,11]).
Given a Jacobi structure(Λ,E) onM, the spaceΩ1(M )×C∞(M,R) is endowed with

a Lie algebra structure whose bracket

{ , } : (Ω1(M ) × C∞(M,R))2 → Ω1(M ) × C∞(M,R) (6)

is defined, for all(α, f ), (β, g) ∈ Ω1(M ) × C∞(M,R), by

{(α, f ), (β, g)} := (γ, h), (7)

where

γ := LΛ#(α)β − LΛ#(β)α − d(Λ(α, β)) + fLEβ − gLEα − iE(α ∧ β), (8)

h := −Λ(α, β) + Λ(α,dg) − Λ(β,df ) + 〈 fdg− gdf, E〉, (9)
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(L denotes the Lie derivative operator) (cf.[4]). WhenE identically vanishes onM, i.e.
Λ is a Poisson tensor onM, the projection of(6) on Ω1(M ) coincides with the bracket
associated withΛ that endows this space with a Lie algebra structure (cf.[6,27]).

Let a ∈ C∞(M,R) be a function that never vanishes onM, and{ , }a : C∞(M,R) ×
C∞(M,R) → C∞(M,R) a new internal composition law onC∞(M,R), bilinear and
skew-symmetric, given, for each pair(f, g) ∈ C∞(M,R) × C∞(M,R), by

{f, g}a := 1

a
{af,ag}. (10)

This law endows the spaceC∞(M,R) with a new Jacobi bracket that defines a new Jacobi
structure(Λa,Ea) on M, which is said to bea-conformalto the initially given one. The
structures(Λ,E) and(Λa,Ea) are said to beconformally equivalent. One has

Λa = aΛ and Ea = Λ#(da) + aE. (11)

The equivalence class of the Jacobi structures onM that are conformally equivalent to a
given Jacobi structure is called theconformal Jacobi structure of M.

Let (M1,Λ1, E1) and (M2,Λ2, E2) be two Jacobi manifolds andφ : M1 → M2 a
differentiable map. IfΛ1 andE1 are projectable byφ on M2 and their projections are,
respectively,Λ2 andE2, i.e.φ∗Λ1 = Λ2 andφ∗E1 = E2, thenφ : M1 → M2 is said to be
a Jacobi morphismor aJacobi map. Whenφ : M1 → M2 is a diffeomorphism, the Jacobi
structures(Λ1, E1) and(Λ2, E2) are said to beequivalent.

A mapφ : M1 → M2 is called ana-conformal Jacobi mapif there existsa ∈ C∞(M1,R)

that never vanishes onM1 such thatφ : (M,Λa
1, E

a
1) → (M,Λ2, E2) is a Jacobi map.

For a more detailed exposition of the essential properties of Jacobi manifolds, see[11,15].

2.2. Homogeneous Poisson manifolds and conformal Jacobi manifolds

In this paragraph, we present and we complete some results, needed in the sequel, due
to Lichnerowicz ([11,12]), and to Dazord et al. ([2]), concerning the homogeneous Poisson
manifolds and the conformal Jacobi manifolds.

Definition 2.1. A homogeneous Poisson manifold(M,Λ, T ) is a Poisson manifold(M,Λ)

with a vector fieldT onM, called the homothety vector field, such that

LTΛ = [T ,Λ] = −Λ.

Proposition 2.1 ([2]). Let (M,Λ, T ) be a homogeneous Poisson manifold andΣ a sub-
manifold ofM, of codimension1, transverse to the homothety vector fieldT . Then, Σ has
an induced Jacobi structure(ΛΣ,EΣ) characterized by one of the following properties:

1. For any pair (f, g) of homogeneous functions of degree1 with respect toT , defined
on an open subsetO of M, the Jacobi bracket off andg, restricted toΣ ∩ O, is the
restriction toΣ ∩O of the Poisson bracket off andg.

2. Letπ : U → Σ be the projection onΣ of a tubular neighbourhoodU of Σ in M such
that, for anyx ∈ Σ , π−1(x) is a connected arc of the integral curve ofT throughx.
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Leta be a function onU , equal to1 onΣ and homogeneous of degree1 with respect to
T . Then, the projectionπ is ana-conformal Jacobi map.

Of course, the characteristic leaves of the Jacobi structure(ΛΣ,EΣ) onΣ are (at least
locally) the projections onΣ , parallel to the integral curves ofT , of the symplectic leaves
of (M,Λ). Since these last ones are all of even dimension, one has:

1. A leaf of(Σ,ΛΣ,EΣ) has even dimension if and only ifT is not tangent to the corre-
sponding leaf of(M,Λ). Then, the restriction ofπ : U → Σ to this symplectic leaf of
(M,Λ) is a local diffeomorphism of this leaf of(M,Λ) onto the corresponding leaf of
(Σ,ΛΣ,EΣ).

2. A leaf of(Σ,ΛΣ,EΣ)has odd dimension if and only ifT is tangent to the corresponding
leaf of(M,Λ). Then, the dimension of this leaf of(Σ,ΛΣ,EΣ) is lower one unity than
the dimension of the corresponding leaf of(M,Λ).

In order to determine, in practice, the pair(ΛΣ,EΣ)we do as follows: (i) we compute the
functiona, equal to 1 onΣ and homogeneous of degree 1 with respect toT , i.e.LT a = a;
(ii) we compute the tensor fieldsΛa andEa that define, on a tubular neighbourhoodU
of Σ in M, thea-conformal Jacobi structure to its Poisson structure; (iii) we denote by
π : U → Σ the projection ofU on Σ , parallel to the integral curves ofT , and we
projectΛa andEa onΣ byπ . Sinceπ is a Jacobi map of(U,Λa,Ea) onto(Σ,ΛΣ,EΣ),
we have

ΛΣ = π∗Λa and EΣ = π∗Ea. (12)

Notice that when a Poisson manifold(M,Λ) possesses a homothety vector fieldT , i.e.
LTΛ = −Λ, this one is not unique. Each vector field of typeT + X, whereX is an
infinitesimal Poisson automorphism ofΛ, i.e.LXΛ = 0, is also a homothety vector field of
Λ. LetΣ be an one-codimensional submanifold ofM, transverse to two different homothety
vector fields ofΛ. The influence of the choice of a homothety vector field of(M,Λ) on the
Jacobi structure induced onΣ by the homogeneous Poisson structure ofM will be studied
next.

Lemma 2.1. Let(M,Λ, T ) be a homogeneous Poisson manifold,Σ an one-codimensional
submanifold ofM transverse to the homothety vector fieldT and (ΛΣ,EΣ) the Jacobi
structure onΣ induced by the homogeneous Poisson structure(Λ, T ) ofM. Then, a vector
fieldT ′ onM is a homothety vector field ofΛ if and only if

T ′ = X + hT,

whereX is a vector field tangent toΣ andh is a differentiable function such that:

[X,ΛΣ ] + [X, T ] ∧ EΣ − hΛΣ = −ΛΣ, (13)

[X,EΣ ] + [h,ΛΣ ] − (h + 〈dh, T 〉)EΣ = −EΣ. (14)

Proof. Let p be a point ofΣ such thatT (p) �= 0 andΣ is transverse toT atp. We may
suppose, restrictingΣ if needed, that there exists an open neighbourhoodU of p in M
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which can be identified with the productΣ × I of the submanifoldΣ and an open interval
I of R containing 0. Therefore,Σ is identified withΣ × {0} andT , restricted toU , with
the vector field whose projections onΣ andI are, respectively, the zero vector field and the
constant vector field equal to 1, i.e. ift is the canonical coordinate onI , T = ∂/∂t . Then,
from Eqs. (11) and (12), it follows that

Λ|U = 1

a
(ΛΣ + T ∧ EΣ), (15)

wherea is the homogeneous function of degree 1 with respect toT , defined onU = Σ × I ,
whose restriction toΣ is equal to 1, i.e.a(x, t) = et . Also, any vector fieldT ′ onU can be
written as

T ′ = X + hT,

whereX is a vector field tangent toΣ andh is a differentiable function onU . It is easy to
check thatT ′ is a homothety vector field ofΛ if and only if X andh satisfyEqs. (13) and
(14). �

Remark 2.1. Obviously,T ′ is transverse toΣ atp if and only if h(p) �= 0. In this case,
we may suppose, restrictingU if needed, thath never vanishes onU .

Lemma 2.2. Under the same hypothesis and notations as above, let T ′ = X + hT be a
homothety vector field ofΛ, with h never vanishing onU . The homogeneous functions of
degree 1 with respect toT ′, defined onU and constant onΣ , are the functions of type

f (x, t) = F(x)exp

(∫
dt

h

)
(16)

satisfyingLXf = 0, whereF is an arbitrary differentiable function onΣ .

Proof. Let f be a differentiable function defined onU = Σ × I having the properties
described above. Then,LT ′f = f andLXf = 0. We have

〈df, T ′〉 = 〈df, X + hT〉 = 〈df, X〉 + h〈df, T 〉 = h
∂f

∂t
= f.

Hence,

f (x, t) = exp

(∫
dt

h
+ ϕ(x)

)
,

whereϕ is an arbitrary differentiable function independent oft . SettingF(x) = exp(ϕ(x)),
we getEq. (16). �

Always in the context of the above lemmas, we denote byπ : U → Σ , U = Σ × I ,
the first projection, which is the projection ofU on Σ parallel to the integral curves of
T . Let T ′ = X + hT be a homothety vector field of(M,Λ) different fromT , transverse
to Σ at p, i.e. h(p) �= 0, andπ ′ : U → Σ the projection ofU on Σ parallel to the
integral curves ofT ′. After having considered the identification ofU with Σ × I and of
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T with ∂/∂t , π ′ is the map that takes each point(x, t) of U = Σ × I to the unique point
x′ of Σ such that(x′,0) and (x, t) belong to the same integral curve ofT ′. SinceΣ is
an one-codimensional submanifold of(M,Λ, T ′) transverse toT ′, it possesses a Jacobi
structure(Λ′

Σ,E′
Σ) induced by(Λ, T ′), in the sense ofProposition 2.1, such thatπ ′ is

ana′-conformal Jacobi map of(U,Λ|U) onto (Σ,Λ′
Σ,E′

Σ), wherea′ is a homogeneous
function of degree 1 with respect toT ′, i.e.LT ′a′ = a′, defined onU and equal to 1 onΣ .
Next proposition states a relationship between(ΛΣ,EΣ) and(Λ′

Σ,E′
Σ).

Proposition 2.2. Under the same assumptions and notations as above, we get

Λ′
Σ = ΛΣ − 1

h0
X0 ∧ EΣ and E′

Σ = 1

h0
EΣ,

whereh0 and X0 are, respectively, the restrictions ofh and X to Σ × {0}, identified
with Σ .

Proof. Letf andg be two functions defined on a neighbourhoodUΣ of p in Σ . We denote
byF andG two functions defined on a neighbourhood of(p,0) in Σ × I , constant on each
integral curve ofT ′, whose restrictions toΣ × {0}, identified withΣ , coincide withf and
g, respectively. Sinceπ ′ : (U,Λ|U) → (Σ,Λ′

Σ,E′
Σ) is ana′-conformal Jacobi map, we

have

Λ′
Σ(df,dg) = a′Λ(dF,dG) and E′

Σ = π ′
∗(Λ

#(da′)),

with the following convention: if the left member of the first equation is evaluated atx ∈ UΣ ,
then the right member of this equation must be evaluated at a point(y, t) ofΣ×I belonging
to the integral curve ofT ′ through(x,0). We choosey = x andt = 0.

We computedF anddGat (x,0). We have

dF(x,0) = DxF(x,0) + ∂F

∂t
(x,0)dt,

whereDxF is the partial derivative ofF with respect to the variablesx on Σ . Since
F(x,0) = f (x), DxF(x,0) = df(x). Moreover,〈dF(x,0), T ′(x,0)〉 = 0, becauseF is
constant on the integral curves ofT ′. Last equality gives〈

∂F

∂t
(x,0)dt, T (x,0)

〉
= − 1

h(x,0)
〈df(x),X(x,0)〉.

So,

dF(x,0) = df(x) − 1

h(x,0)
〈df(x),X(x,0)〉dt

and also

dG(x,0) = dg(x) − 1

h(x,0)
〈dg(x),X(x,0)〉dt.

Then, taking into accountEq. (15)and the fact that〈dt, T 〉 = 1,
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Λ′
Σ(x)(df(x),dg(x))= a′(x,0)Λ(x,0)(dF(x,0),dG(x,0))

= a′(x,0)

a(x,0)
(ΛΣ + T ∧ EΣ)(x,0)

(
df(x) − 1

h(x,0)

×〈df(x),X(x,0)〉dt,dg(x) − 1

h(x,0)
〈dg(x),X(x,0)〉dt

)

=ΛΣ(x)(df(x),dg(x)) − 1

h(x,0)
〈df(x),X(x,0)〉

×〈dg(x), EΣ(x)〉 + 1

h(x,0)
〈dg(x),X(x,0)〉〈df(x), EΣ(x)〉.

So, we get

Λ′
Σ = ΛΣ − 1

h0
X0 ∧ EΣ,

whereh0 andX0 denote, respectively, the restrictions ofh andX to Σ × {0}.
On the other hand,

E′
Σ(x) = T(x,0)π

′(Λ#
(x,0)(da′(x,0))).

But, a′ as a homogeneous function of degree 1 with respect toT ′, equal to 1 onΣ , is of
type(16). Furthermore,Λ#

Σ(x)(da′(x,0)) = 0 and〈da′(x,0), EΣ(x)〉 = 0. Then,

Λ#
(x,0)(da′(x,0))= 1

a(x,0)
(Λ#

Σ(x)(da′(x,0)) + 〈da′(x,0), T 〉EΣ

− 〈da′(x,0), EΣ 〉T ) = ∂a′

∂t
(x,0)EΣ = a′(x,0)

h(x,0)
EΣ

and we deduce

E′
Σ = 1

h0
EΣ. �

Proposition 2.3 ([2]). Let (M1,Λ1, T1) and (M2,Λ2, T2) be two homogeneous Poisson
manifolds.

1. The productM1 × M2 equipped with the Poisson tensorΛ1 + Λ2 and the homothety
vector fieldT1 + T2 is a homogeneous Poisson manifold.

2. LetΣ1 be an one-codimensional submanifold ofM1 transverse toT1 and(Λ1Σ1, E1Σ1)

the Jacobi structure induced onΣ1 by the homogeneous Poisson structure(Λ1, T1) of
M1. Then, Σ1 × M2 is an one-codimensional submanifold ofM1 × M2 transverse to
T1 + T2; the bivector fieldΛΣ1×M2 and the vector fieldEΣ1×M2 that define its Jacobi
structure induced by the homogeneous Poisson structure(Λ1+Λ2, T1+T2) ofM1×M2
are given, respectively, by the formulæ

ΛΣ1×M2 = Λ1Σ1 + Λ2 − T2 ∧ E1Σ1 and EΣ1×M2 = E1Σ1.
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Proposition 2.4 ([2]). Let (M,Λ, T ) be a homogeneous Poisson manifold, andΣ and
Σ ′ two submanifolds ofM of codimension 1 transverse toT . We assume that there exists
an integral curve ofT intersectingΣ at a pointp andΣ ′ at a pointp′. We provideΣ
andΣ ′ with the Jacobi structures induced by the homogeneous Poisson structure ofM,
in the sense ofProposition 2.1. Then, there exists a conformal Jacobi diffeomorphism of a
neighbourhood ofp in Σ onto a neighbourhood ofp′ in Σ ′, mappingp to p′.

Proposition 2.5 ([2]). With any Jacobi manifold(M,Λ,E) we may associate a homoge-
neous Poisson manifold(M̃, Λ̃, T̃ ) by settingM̃ = M × R,

Λ̃ = e−t

(
Λ + ∂

∂t
∧ E

)
and T̃ = ∂

∂t
,

wheret is the canonical coordinate on the factorR. Then,

1. the projectionπ : M̃ → M is a et -conformal Jacobi map;
2. the Jacobi structure induced onM, considered as an one-codimensional submanifold

of M̃ transverse toT̃ , by the homogeneous Poisson structure ofM̃, in the sense of
Proposition 2.1, is the one given initially.

The manifold(M̃, Λ̃, T̃ ) is called the Poissonization of the Jacobi manifold(M,Λ,E).

2.3. Compatible Jacobi structures

Generalizing the notion of compatibility of two Poisson tensors (cf.[13]), we are lead, in a
natural way, to the definition of compatibility of two Jacobi structures defined on a differen-
tiable manifold introduced in[19] by one of the authors. In this paragraph, we recall and we
complete some results of[19] on compatible pairs of Jacobi structures, useful in the sequel.

Definition 2.2. Two Jacobi structures(Λ0, E0) and(Λ1, E1) defined on a differentiable
manifoldM are said to be compatible if(Λ0 + Λ1, E0 + E1) is also a Jacobi structure on
M; this fact can be expressed by

[Λ0,Λ1] = −E0 ∧ Λ1 − E1 ∧ Λ0 and [E0,Λ1] + [E1,Λ0] = 0.

Proposition 2.6 ([19]). Let (Λ0, E0) and (Λ1, E1) be two compatible Jacobi structures
on a differentiable manifoldM. Then, for anya ∈ C∞(M,R) that never vanishes onM,
the Jacobi structures(Λa

0, E
a
0) and (Λa

1, E
a
1) a-conformal, respectively, to (Λ0, E0) and

(Λ1, E1) are also compatible onM.

Proposition 2.7 ([19]). Two Jacobi structures(Λ0, E0) and (Λ1, E1) defined on a dif-
ferentiable manifoldM are compatible if and only if the homogeneous Poisson tensors
Λ̃0 = e−t (Λ0 + (∂/∂t) ∧ E0) and Λ̃1 = e−t (Λ1 + (∂/∂t) ∧ E1), with respect to∂/∂t ,
associated, respectively, with (Λ0, E0) and(Λ1, E1), are compatible onM̃ = M × R.

Definition 2.3. A homogeneous bihamiltonian manifold(M,Λ0,Λ1, T ) is a differentiable
manifoldM equipped with a pair(Λ0,Λ1) of compatible Poisson tensors in the sense of
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Magri, i.e.Λ0 + Λ1 is also a Poisson tensor onM, and with a vector fieldT such that

LTΛ0 = [T ,Λ0] = −Λ0 and LTΛ1 = [T ,Λ1] = −Λ1.

Proposition 2.8. Let (M,Λ0,Λ1, T ) be a homogeneous bihamiltonian manifold. We de-
note byΣ andΣ ′ two submanifolds ofM, of codimension 1, transverse to the homothety
vector fieldT . We suppose that there exists an integral curve ofT intersectingΣ at a pointp
andΣ ′ at a pointp′.We provideΣ (respectivelyΣ ′) with the pair of compatible Jacobi struc-
tures((Λ0Σ,E0Σ), (Λ1Σ,E1Σ)) (respectively((Λ0Σ ′ , E0Σ ′), (Λ1Σ ′ , E1Σ ′))) induced by
the homogeneous bihamiltonian structure ofM. Then, there exists a conformal Jacobi dif-
feomorphism of a neighbourhood ofp in Σ onto a neighbourhood ofp′ in Σ ′, with respect
both to (Λ0Σ,E0Σ) and (Λ0Σ ′ , E0Σ ′), and (Λ1Σ,E1Σ) and (Λ1Σ ′ , E1Σ ′), mappingp
to p′.

Proof. First, we remark that the Jacobi structures(Λ0Σ,E0Σ) and(Λ1Σ,E1Σ) (respec-
tively (Λ0Σ ′ , E0Σ ′) and(Λ1Σ ′ , E1Σ ′)) are compatible; this is a direct result ofProposi-
tions 2.1, 2.5 and 2.7.

FromProposition 2.4, there exists a conformal Jacobi diffeomorphismφ0 (respectively
φ1) of a neighbourhoodU0 (respectivelyU1) of p in Σ onto a neighbourhoodU ′

0 (re-
spectivelyU ′

1) of p′ in Σ ′ mapping: (i)p to p′ and (ii) ana0 (respectivelya1)-conformal
Jacobi structure to(Λ0Σ,E0Σ) (respectively to(Λ1Σ,E1Σ)) to (Λ0Σ ′ , E0Σ ′) (respectively
to (Λ1Σ ′ , E1Σ ′)). From the proof ofProposition 2.4(cf. [2]), we deduce that the diffeomor-
phismsφ0 andφ1, and also the functionsa0 anda1, coincide onU0 ∩ U1. �

2.4. Nijenhuis operator

LetM be a differentiable manifold andN : V1(M )×C∞(M,R) → V1(M )×C∞(M,R)

aC∞(M,R)-linear map given, for all pairs(X, f ) ∈ V1(M ) × C∞(M,R), by

N(X, f ) = (NX+ f Y, 〈γ,X〉 + gf ), (17)

whereN is a tensor field onM of type (1,1),Y is a vector field onM, γ is a differentiable
one-form onM andg is a differentiable function onM.N := (N, Y, γ, g) can be considered
as a vector bundle mapN : TM × R → TM × R. Since the spaceV1(M ) × C∞(M,R)

endowed with the bracket

[ , ] : (V1(M ) × C∞(M,R))2 → V1(M ) × C∞(M,R),

defined, for all((X, f ), (Z, h)) ∈ (V1(M ) × C∞(M,R))2, by

[(X, f ), (Z, h)] = ([X,Z], 〈dh, X〉 − 〈df, Z〉),
is a real Lie algebra, we can determine, in a natural way, theNijenhuis torsionT (N ) ofN
as theC∞(M,R)-bilinear map

T(N ) : (V1(M ) × C∞(M,R))2 → V1(M ) × C∞(M,R)
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given, for all((X, f ), (Z, h)) ∈ (V1(M ) × C∞(M,R))2, by

T(N )((X, f ), (Z, h))= [N(X, f ),N(Z, h)] −N [N(X, f ), (Z, h)]

−N [(X, f ),N(Z, h)] +N 2[(X, f ), (Z, h)].

Definition 2.4. A C∞(M,R)-linear mapN : V1(M )×C∞(M,R) → V1(M )×C∞(M,R)

is called a Nijenhuis operator onM if its Nijenhuis torsionT(N ) identically vanishes
onM.

The notion ofNijenhuis operatorintroduced above is a generalization of the notion of
Nijenhuis tensor. We recall that aNijenhuis tensoron a differentiable manifoldM is a tensor
field N onM of type (1,1) whose Nijenhuis torsion

T (N)(X,Z)= [NX,NZ] − N [NX, Z] − N [X,NZ] + N2[X,Z]

= (LNXN − NLXN)Z, (X,Z ∈ V1(M )),

identically vanishes onM.
UsingN := (N, Y, γ, g) we can construct oñM = M × R a tensor fieldÑ of type (1,1)

by setting

Ñ = N + Y ⊗ dt + ∂

∂t
⊗ γ + g

∂

∂t
⊗ dt, (18)

wheret is the canonical coordinate on the factorR.

Proposition 2.9 ([20]). The tensor fieldÑ on M̃ = M × R is a Nijenhuis tensor if and
only if

T (N) = Y ⊗ dγ, (19)

LNγ = gdγ, (20)

LYN = −Y ⊗ dg, (21)

tN(dg) = LYγ + gdg, (22)

whereT (N) is the Nijenhuis torsion ofN , LNγ is the operator onM given, for all X,Z ∈
V1(M ), by

LNγ (X,Z) = dγ (NX, Z) + dγ (X,NZ) − d(tNγ )(X,Z),

and tN is the transpose ofN .

It is easy to prove that conditions(19)–(22)assure thatN := (N, Y, γ, g) is a Nijenhuis
operator onM, and reciprocally. So, we conclude:

Proposition 2.10. LetN : V1(M )×C∞(M,R) → V1(M )×C∞(M,R) be aC∞(M,R)-
linear map given byEq. (17). Then, N is a Nijenhuis operator onM if and only if its
associated tensor field̃N on M̃, given byEq. (18), is a Nijenhuis tensor oñM.
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2.5. Jacobi–Nijenhuis manifolds

Let M be a differentiable manifold of finite dimension equipped with a Jacobi structure
(Λ0, E0) and aC∞(M,R)-linear mapN : V1(M )×C∞(M,R) → V1(M )×C∞(M,R),
N := (N, Y, γ, g), given byEq. (17). Then, we can consider onM the bivector fieldΛ1
and the vector fieldE1 characterized by

(Λ1, E1)
# = N ◦ (Λ0, E0)

#. (23)

If we ask under what conditions does the pair(Λ1, E1)define onM a new Jacobi structure
compatible with(Λ0, E0), in the sense ofDefinition 2.2, we find (cf.[17]):

1. Λ1 is skew-symmetric if and only if

N ◦ (Λ0, E0)
# = (Λ0, E0)

# ◦ tN, (24)

wheretNdenotes the transpose ofN. This condition is equivalent to the following system
of conditions:

NE0 = Λ#
0(γ ) + gE0, (25)

NΛ#
0 − Y ⊗ E0 = Λ#

0
tN + E0 ⊗ Y, (26)

〈γ,E0〉 = 0. (27)

Then,

Λ#
1 = NΛ#

0 − Y ⊗ E0 = Λ#
0

tN + E0 ⊗ Y, (28)

E1 = NE0 = Λ#
0(γ ) + gE0. (29)

2. WhenΛ1 is skew-symmetric,(Λ1, E1) defines a Jacobi structure onM if and only if,
for all (α, f ), (β, h) ∈ Ω1(M ) × C∞(M,R),

T(N )((Λ0, E0)
#(α, f ), (Λ0, E0)

#(β, h))

= N ◦ (Λ0, E0)
#(C((Λ0, E0),N )((α, f ), (β, h))).

In the last expression,C((Λ0, E0),N ) is the concomitant of(Λ0, E0) andN defined,
for all (α, f ), (β, h) ∈ Ω1(M ) × C∞(M,R), by

C((Λ0, E0),N )((α, f ), (β, h))

= {(α, f ), (β, h)}1 − {tN(α, f ), (β, h)}0

− {(α, f ), tN(β, h)}0 + tN{(α, f ), (β, h)}0,

({, }i is the bracket(6) associated with(Λi, Ei), i = 0,1).
3. When(Λ1, E1) is a Jacobi structure, it is compatible with(Λ0, E0) if and only if, for

all (α, f ), (β, h) ∈ Ω1(M ) × C∞(M,R),

(Λ0, E0)
#(C((Λ0, E0),N )((α, f ), (β, h))) = 0.

Hence, we introduce the following definition.
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Definition 2.5. A Jacobi–Nijenhuis structure on a differentiable manifoldM is defined by a
Jacobi structure(Λ0, E0) and a Nijenhuis operatorN that are compatible, i.e.
(i) N ◦ (Λ0, E0)

# = (Λ0, E0)
# ◦ tN and (ii) (Λ0, E0)

# ◦ C ((Λ0, E0),N) : (Ω1(M ) ×
C∞(M,R))2 → V1(M ) × C∞(M,R) identically vanishes onM.

(M, (Λ0, E0),N ) is said to be a Jacobi–Nijenhuis manifold.N is called the recursion
operator of(M, (Λ0, E0),N ).

Remark 2.2. The notion of Jacobi–Nijenhuis structure presented above is stricter than the
one introduced in[17]. In Definition 2.5we require that the Nijenhuis torsionT(N ) of N
identically vanishes onM, while in [17] it is only requiredT(N ) to be null on the image of
(Λ0, E0)

#.

Let (M, (Λ0, E0),N ) be a Jacobi–Nijenhuis manifold,(Λ1, E1) the Jacobi structure
associated with(Λ1, E1)

# = N ◦ (Λ0, E0)
#, which is compatible with(Λ0, E0), and

a ∈ C∞(M,R) a function that never vanishes onM. Let us consider the Jacobi struc-
tures(Λa

0, E
a
0) and(Λa

1, E
a
1) a-conformal to(Λ0, E0) and(Λ1, E1), respectively. From

Proposition 2.6, (Λa
0, E

a
0) and(Λa

1, E
a
1) are compatible. One may ask if there exists a Nijen-

huis operatorNa := (Na, Y a, γ a, ga), compatible with(Λa
0, E

a
0), such that(Λa

1, E
a
1)

# =
Na ◦ (Λa

0, E
a
0)

#.

Proposition 2.11. Under the same assumptions and notations as above, there exists a
recursion operatorN a := (Na, Y a, γ a, ga) of ((Λa

0, E
a
0), (Λ

a
1, E

a
1)), where

Na = N − Y ⊗ da

a
, Y a = Y,

γ a = γ + tN
da

a
−
(
g + 1

a
LY a

)
da

a
, ga = g + 1

a
LY a.

Proof. Taking into accountEqs. (11), (25)–(27), we deduce the expressions written above
of Na , Ya , γ a andga . It is easy to verify thatN a := (Na, Y a, γ a, ga) is a Nijenhuis
operator. It is compatible with(Λa

0, E
a
0) because(Λa

1, E
a
1) is a Jacobi structure compatible

with (Λa
0, E

a
0). �

The Jacobi–Nijenhuis structure((Λa
0, E

a
0),N

a) is said to bea-conformalto((Λ0,E0),N ).

Definition 2.6 ([6,7]). A Poisson–Nijenhuis manifold(M,Λ0, N) is a Poisson manifold
(M,Λ0) equipped with a Nijenhuis tensorN compatible withΛ0, i.e. (i) NΛ#

0 = Λ#
0

tN ,
wheretN is the transpose ofN , and (ii)Λ#

0 ◦ C(Λ0, N) : Ω1(M ) × Ω1(M ) → V1(M )

identically vanishes onM. We denote byC(Λ0, N) the concomitant of Magri–Morosi of
Λ0 andN given, for all(α, β) ∈ Ω1(M ) × Ω1(M ), by

C(Λ0, N)(α, β) = {α, β}1 − {tNα, β}0 − {α, tNβ}0 + tN{α, β}0,

({, }i is the bracket associated withΛi , Λ#
i = NiΛ#

0, i = 0,1, that endowsΩ1(M ) with a
Lie algebra structure).

N is called recursion operator of(M,Λ0, N).
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Definition 2.7. A Poisson–Nijenhuis manifold(M,Λ0, N) equipped with a vector fieldT
such that

LTΛ0 = [T ,Λ0] = −Λ0 and LTN = 0 (30)

is called a homogeneous Poisson–Nijenhuis manifold.

Remark 2.3. The homogeneous Poisson–Nijenhuis manifolds are a particular class of
homogeneous bihamiltonian manifolds (cf.Definition 2.3). FromEq. (30), one hasLTΛ1 =
[T ,Λ1] = −Λ1, whereΛ1 is the Poisson tensor associated withΛ#

1 = NΛ#
0. Moreover,

T is a homothety vector field of each member of the hierarchy(Λk, k ∈ N), Λ#
k = NkΛ#

0,
of pairwise compatible Poisson tensors generated onM by Λ0 andN , i.e. for all k ∈ N ,
LTΛk = [T ,Λk] = −Λk.

Proposition 2.12. Let(M,Λ0, N, T ) be a homogeneous Poisson–Nijenhuis manifold and
Σ an one-codimensional submanifold ofM transverse toT . Then, (Λ0, N, T ) induces a
Jacobi–Nijenhuis structure((Λ0Σ,E0Σ),NΣ),NΣ := (NΣ, YΣ, γΣ, gΣ), onΣ charac-
terized by the following properties.

1. (Λ0Σ,E0Σ) is the Jacobi structure induced onΣ by the homogeneous Poisson structure
(Λ0, T ) of M, in the sense ofProposition 2.1.

2. NΣ := (NΣ, YΣ, γΣ, gΣ) is the Nijenhuis operator induced onΣ by the(N, T ) struc-
ture ofM, in the sense presented next. Letπ : U → Σ be the projection onΣ of a
tubular neighbourhoodU of Σ in M such that, for all x ∈ Σ , π−1(x) is a connected
arc of the integral curve ofT throughx, and let‘a’ be a differentiable function onU ,
that never vanishes, equal to1 onΣ and homogeneous of degree 1 with respect toT , as
in Proposition 2.1. Then, NΣ is the tensor field of type(1,1)onΣ induced byN , YΣ is
the projection of(NT)|Σ onTΣ byπ , γΣ is the one of(tN(da/a))|Σ onT ∗Σ andgΣ
is the coefficient of the component of(NT)|Σ in the direction ofT .

Proof. Let a be a function onU possessing the above properties. Sincea is assumed
to be homogeneous of degree 1 with respect toT and never vanishing onU , one has
〈(da/a), T 〉 = 1 andLT (da/a) = 0. Then, at each pointx ∈ U , (da/a)(x) generates an
one-dimensional subspace ofT ∗

x U which is the complementary of the annihilator〈T (x)〉◦
of the subspace〈T (x)〉 of TxU generated byT (x). Furthermore,(da/a)|Σ = (da)|Σ is a
section of the annihilator ofTΣ .

Let us consider the projectionπ : U → Σ parallel to the integral curves ofT . We denote
by TΣπ : TΣU → TΣ the vector bundle projection ofTΣU onto its subbundleTΣ and
tTΣπ : T ∗Σ → T ∗

ΣU its transpose. So,

TΣπ = IdTΣU −
(
T ⊗ da

a

)∣∣∣∣
Σ

, (31)

andtTΣπ is the injection that prolongs every linear form onΣ to a linear form onU that
vanishes on ker(TΣπ) = 〈T |Σ 〉. Then, as we have observed (cf.Section 2.2),

Λ#
0Σ = TΣπ ◦ (aΛ#

0)|Σ ◦ tTΣπ, (32)
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E0Σ = TΣπ(Λ#
0(da)|Σ)

(31)= (Λ#
0(da))|Σ. (33)

Of course, the restriction ofΛ0 to U can be written as

Λ0 = 1

a
(Λ0Σ + T ∧ E0Σ). (34)

On the other hand, sinceLTN = 0, the restriction ofN to U may be written as

N = NΣ + YΣ ⊗ da

a
+ T ⊗ γΣ + gΣT ⊗ da

a
, (35)

whereNΣ is a tensor field onΣ of type (1,1),YΣ is a vector field onΣ ,γΣ is a one-form onΣ
andgΣ is a differentiable function onΣ . Since the restriction ofTΣπ : TΣU → TΣ to the
horizontal subbundleTΣ of TΣU , denoted by(TΣπ)h, is a bijection,N |Σ : TΣU → TΣU

induces onΣ a tensor field of type (1,1) defined byTΣπ ◦ N |Σ ◦ (TΣπ)−1
h . It is not hard

to verify that this one is justNΣ , i.e.

NΣ = TΣπ ◦ N |Σ ◦ (TΣπ)−1
h . (36)

Moreover,YΣ can be seen as the projection of(NT)|Σ onTΣ , i.e.

YΣ = TΣπ((NT)|Σ)
(31)= (NT)|Σ − (i((NT)|Σ)(da)|Σ)T |Σ, (37)

γΣ as the projection of(tN(da/a))|Σ onT ∗Σ , i.e.

γΣ =
(

tN
da

a

)∣∣∣∣
Σ

−
〈(

tN
da

a

)∣∣∣∣
Σ

, T |Σ
〉

da|Σ, (38)

andgΣ as the coefficient of the component of(NT)|Σ in the direction ofT |Σ , i.e.

gΣ =
〈(

da

a

)∣∣∣∣
Σ

, (NT)|Σ
〉
. (39)

Hence, fromN = NΣ + YΣ ⊗ (da/a) + T ⊗ γΣ + gΣT ⊗ (da/a) we define onΣ a
C∞(Σ,R)-linear operatorNΣ : V1(Σ) × C∞(Σ,R) → V1(Σ) × C∞(Σ,R) by setting,
for all (X, f ) ∈ V1(Σ) × C∞(Σ,R),

NΣ(X, f ) = (NΣX + fYΣ, 〈γΣ,X〉 + gΣf ). (40)

Clearly, the tensor fieldN onU can be consider as the tensor field associated withNΣ :=
(NΣ, YΣ, γΣ, gΣ), in the sense ofSection 2.4. Then,Proposition 2.10implies thatNΣ

is a Nijenhuis operator onΣ . We are going to verify its compatibility with the Jacobi
structure(Λ0Σ,E0Σ) of Σ . From Definition 2.5, the required conditions are: (i)NΣ ◦
(Λ0Σ,E0Σ)# = (Λ0Σ,E0Σ)# ◦ tNΣ and (ii) the map(Λ0Σ,E0Σ)# ◦C((Λ0Σ,E0Σ),NΣ)

identically vanishes onΣ . But, after a long computation, we may confirm that the above
mentioned conditions hold if and only if the tensor fieldsΛ0 andN (cf., respectively,
formulæ(34) and (35)) verify

NΛ#
0 = Λ#

0
tN and Λ#

0 ◦ C(Λ0, N) = 0. (41)

Since(Λ0, N) is a Poisson–Nijenhuis structure onM, from Definition 2.6, Eq. (41)holds.
Consequently, conditions (i) and (ii) also hold, and(Λ0Σ,E0Σ) andNΣ are compatible
onΣ . �
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Remark 2.4. Let ((Λk, k ∈ N), T ), Λ#
k = NkΛ#

0, be the hierarchy of pairwise com-
patible Poisson tensors, homogeneous with respect toT , generated onM by (Λ0, N)

(cf. Remark 2.3). Each member(Λk, T ) of this hierarchy induces onΣ a Jacobi struc-
ture (ΛkΣ,EkΣ), in the sense ofProposition 2.1. Hence, we obtain onΣ a sequence
((ΛkΣ,EkΣ), k ∈ N) of Jacobi structures. It is easy to verify that they are pairwise com-
patible and that, for allk ∈ N , (ΛkΣ,EkΣ) coincides with the structure defined by

(ΛkΣ,EkΣ)# = Nk
Σ ◦ (Λ0Σ,E0Σ)#.

As in Section 2.2, we remark that when a Poisson–Nijenhuis manifold(M,Λ0, N) pos-
sesses a vector fieldT verifying Eq. (30), this one is not unique; all the vector fields of
typeT +X, whereX is an infinitesimal Poisson automorphism ofΛ0 such thatLXN = 0,
also verifyEq. (30). Let Σ be an one-codimensional submanifold ofM transverse to two
different homothety vector fieldsT andT ′ of Λ0 such thatLTN = 0 andLT ′N = 0.
In Section 2.2, we studied the influence of the choice of a such vector field on the Jacobi
structure induced onΣ by the homogeneous Poisson structure ofM. Next, we are going to
study the influence of this choice on the Nijenhuis operator induced onΣ by the Nijenhuis
tensor ofM.

Lemma 2.3. Let(M,Λ0, N, T ) be a homogeneous Poisson–Nijenhuis manifold,Σ a sub-
manifold ofM of codimension 1, transverse toT ,and((Λ0Σ,E0Σ),NΣ),NΣ := (NΣ, YΣ,

γΣ, gΣ), the Jacobi–Nijenhuis structure induced onΣ by the homogeneous Poisson–
Nijenhuis structure(Λ0, N, T ) of M, in the sense ofProposition 2.12. Then, a vector
fieldT ′ onM verifiesEq. (30)if and only if it is of the type

T ′ = X + hT,

whereX is a vector field tangent toΣ andh is a differentiable function verifyingEqs. (13)
and (14)and, also, the following:

LXNΣ + YΣ ⊗ Dh + [X, T ] ⊗ γΣ + ([X, YΣ ]

+ 〈dh, T 〉YΣ + gΣ [X, T ]) ⊗ da

a
= 0, (42)

−tNΣDh + i(X)dγΣ + D(〈γΣ,X〉) − 〈dh, T 〉γΣ + gΣDh = 0, (43)

−LYΣh + LXgΣ + 〈d(〈γΣ,X〉), T 〉 = 0, (44)

whereD denotes the partial derivative with respect to the variables onΣ .

Proof. We recall the proof ofLemma 2.1and we requireT ′ = X + hT also satisfies
LT ′N = 0. Taking into accountEq. (35), we verify thatLT ′N = 0 if and only ifX andh
fulfill Eqs. (42)–(44). �

Proposition 2.13. Let (M,Λ0, N, T ) be a homogeneous Poisson–Nijenhuis manifold, Σ
an one-codimensional submanifold ofM transverse toT , and T ′ = X + hT another
vector field onM transverse toΣ such that(Λ0, N, T ′) also defines a homogeneous
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Poisson–Nijenhuis structure onM. Let us endowΣ with the Jacobi–Nijenhuis struc-
tures ((Λ0Σ,E0Σ),NΣ), NΣ := (NΣ, YΣ, γΣ, gΣ), and ((Λ′

0Σ,E′
0Σ),N′

Σ), N′
Σ :=

(N ′
Σ, Y ′

Σ, γ ′
Σ, g′

Σ), induced, respectively, by the homogeneous Poisson–Nijenhuis struc-
tures(Λ0, N, T ) and(Λ0, N, T ′) of M, in the sense ofProposition 2.12. Then,

Λ′
0Σ = Λ0Σ − 1

h0
X0 ∧ E0Σ and E′

0Σ = 1

h0
E0Σ, (45)

N ′
Σ = NΣ − 1

h0
X0 ⊗ γΣ, (46)

Y ′
Σ = NΣX0 − 1

h0
〈γΣ,X0〉X0 + h0YΣ − gΣX0, (47)

γ ′
Σ = 1

h0
γΣ, (48)

g′
Σ = gΣ + 1

h0
〈γΣ,X0〉, (49)

whereX0 andh0 are, respectively, the restrictions ofX andh onΣ .

Proof. The formulæ(45)are the result ofProposition 2.2. In order to proveEqs. (46)–(49),
we consider the same identifications as in the proofs ofLemmas 2.1 and 2.3andProposi-
tions 2.2 and 2.12. Let π ′ : U → Σ be the projection parallel to the integral curves ofT ′
anda′ a homogeneous function of degree 1 with respect toT ′, defined onU , and equal to
1 onΣ (cf. Lemma 2.2). We denote byTΣπ ′ : TΣU → TΣ the vector bundle projection
of TΣU onto its horizontal subbundleTΣ associated withπ ′. We remark that

da′

a′

∣∣∣∣
Σ

= 1

h0

da

a

∣∣∣∣
Σ

,

wherea is the homogeneous function of degree 1 with respect toT , considered in the above
mentioned proofs, and also that

TΣπ ′ = IdTΣU −
(
T ′ ⊗ da′

a′

)∣∣∣∣
Σ

= IdTΣU − (X0 + h0T |Σ) ⊗ 1

h0

da

a

∣∣∣∣
Σ

(31)= TΣπ − 1

h0
X0 ⊗ da

a

∣∣∣∣
Σ

.

From the geometric interpretation of the tensor fields that define onΣ the Nijenhuis operator
induced by the Nijenhuis tensor ofM (cf. Proposition 2.12), and considering also the
identifications already made, one has

N ′
Σ = TΣπ ′ ◦ N |Σ ◦ (TΣπ ′)−1

h , Y ′
Σ = TΣπ ′((NT′)|Σ),

γ ′
Σ =

(
tN

da′

a′

)∣∣∣∣
Σ

−
〈(

tN
da′

a′

)∣∣∣∣
Σ

, T |Σ
〉

da

a

∣∣∣∣
Σ

, g′
Σ =

〈
da′

a′

∣∣∣∣
Σ

, (NT′)|Σ
〉
.

Taking into accountEq. (35), the computation of the above formulæ yieldsEqs. (46)–
(49). �
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Proposition 2.14. Let (M,Λ0, N, T ) and(M ′,Λ′
0, N

′, T ′) be two homogeneous Poisson
Nijenhuis manifolds.

1. The productM × M ′ endowed with(Λ0 + Λ′
0, N + N ′, T + T ′) is a homogeneous

Poisson–Nijenhuis manifold.
2. LetΣ be an one-codimensional submanifold ofM transverse toT and ((Λ0Σ,E0Σ),

NΣ), NΣ := (NΣ, YΣ, γΣ, gΣ), the Jacobi–Nijenhuis structure induced onΣ by the
homogeneous Poisson–Nijenhuis structure(Λ0, N, T ) of M, in the sense ofProposi-
tion 2.12. Then: (i) Σ ×M ′ is an one-codimensional submanifold ofM ×M ′ transverse
to T + T ′; (ii) if ((Λ0Σ×M ′ , E0Σ×M ′),NΣ×M ′),NΣ×M ′ := (NΣ×M ′ , YΣ×M ′ , γΣ×M ′ ,
gΣ×M ′), denotes the Jacobi–Nijenhuis structure induced onΣ×M ′ by the homogeneous
Poisson–Nijenhuis structure(Λ0 + Λ′

0, N + N ′, T + T ′) of M × M ′, its tensor fields
are given, respectively, by the formulæ

Λ0Σ×M ′ = Λ0Σ + Λ′
0 − T ′ ∧ E0Σ and E0Σ×M ′ = E0Σ, (50)

NΣ×M ′ = NΣ + N ′ − T ′ ⊗ γΣ, (51)

YΣ×M ′ = YΣ + (N ′ − gΣ IdTM′)T ′, (52)

γΣ×M ′ = γΣ, (53)

gΣ×M ′ = gΣ. (54)

Proof. We are only going to proveEqs. (51)–(54); the first part and the fact thatΣ ×M ′ is
an one-codimensional submanifold ofM × M ′ transverse toT + T ′ are obvious; formulæ
(50)are the result ofProposition 2.3.

LetU anda be, respectively, the tubular neighbourhood ofΣ in M and the homogeneous
function of degree 1 with respect toT defined onU and equal to 1 onΣ that we have consid-
ered in order to construct the Jacobi–Nijenhuis structure((Λ0Σ,E0Σ),NΣ) induced onΣ
by the homogeneous Poisson–Nijenhuis structure(Λ0, N, T ) of M (cf. Proposition 2.12).
Now, we take the submanifoldΣ ×M ′ of M ×M ′ and the tubular neighbourhoodU ×M ′
of Σ ×M ′ in M ×M ′, and we extend the functiona (initially defined onU ) onU ×M ′ by
imposinga to be constant on each section of type{x}×M ′, x ∈ U . Of course, the extended
function a is equal to 1 onΣ × M ′ and it is homogeneous of degree 1 with respect to
T + T ′.

Let π : U × M ′ → Σ × M ′ be the projection parallel to the integral curves ofT + T ′.
We denote byTΣ×M ′π : TΣ×M ′(U × M ′) → T (Σ × M ′) the vector bundle projec-
tion of TΣ×M ′(U × M ′) = TΣU ⊕ TM′ onto its subbundleT (Σ × M ′) = TΣ ⊕ TM′.
We have

TΣ×M ′π = IdTΣ×M′ (U×M ′) −
(
(T + T ′) ⊗ da

a

)∣∣∣∣
Σ×M ′

= IdTΣU + IdTM′ −
(
T ⊗ da

a

)∣∣∣∣
Σ×M ′

−
(
T ′ ⊗ da

a

)∣∣∣∣
Σ×M ′

, (55)
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and we remark that the restriction ofTΣ×M ′π to the horizontal subbundleT (Σ × M ′) of
TΣ×M ′(U × M ′), denoted by(TΣ×M ′π)h, is the identity. FromProposition 2.12,

NΣ×M ′ = TΣ×M ′π ◦ (N + N ′)|Σ×M ′ ◦ (TΣ×M ′π)−1
h ,

YΣ×M ′ = TΣ×M ′π(((N + N ′)(T + T ′))|Σ×M ′),

γΣ×M ′ =
(

t(N + N ′)
da

a

)∣∣∣∣
Σ×M ′

−
〈(

t(N + N ′)
da

a

)∣∣∣∣
Σ×M ′

, (T + T ′)|Σ×M ′

〉
da|Σ×M ′ ,

gΣ×M ′ =
〈
da

a

∣∣∣∣
Σ×M ′

, ((N + N ′)(T + T ′))|Σ×M ′

〉
.

Taking into account(55), the computation of the above formulæ yieldsEqs. (51)–
(54). �

Proposition 2.15. Let(M,Λ0, N, T ) be a homogeneous Poisson–Nijenhuis manifold and
let us consider two one-codimensional submanifoldsΣ andΣ ′ of M transverse toT . We
suppose that there exists an integral curve ofT intersectingΣ at a pointp andΣ ′ at a point
p′. We equipΣ (respectivelyΣ ′) with the Jacobi–Nijenhuis structure((Λ0Σ,E0Σ),NΣ),
NΣ :=(NΣ, YΣ, γΣ, gΣ), (respectively((Λ0Σ ′ , E0Σ ′),NΣ ′),NΣ ′ :=(NΣ ′ , YΣ ′ , γΣ ′ , gΣ ′)),
induced by the homogeneous Poisson–Nijenhuis structure(Λ0, N, T ) of M, in the sense
of Proposition 2.12. Then, there exists a diffeomorphism of a neighbourhood ofp in Σ

onto a neighbourhood ofp′ in Σ ′ that maps: (i)a Jacobi–Nijenhuis structure, conformal
to ((Λ0Σ,E0Σ),NΣ), to ((Λ0Σ ′ , E0Σ ′),NΣ ′) and (ii)p to p′.

Proof. Let (Λ1Σ,E1Σ) (respectively(Λ1Σ ′ , E1Σ ′)) be the Jacobi structure onΣ (respec-
tively Σ ′) generated by((Λ0Σ,E0Σ),NΣ) (respectively((Λ0Σ ′ , E0Σ ′),NΣ ′)). One has
that(Λ1Σ,E1Σ) (respectively(Λ1Σ ′ , E1Σ ′)) is compatible with(Λ0Σ,E0Σ) (respectively
(Λ0Σ ′ , E0Σ ′)). Taking into accountRemark 2.4, (Λ1Σ,E1Σ) (respectively(Λ1Σ ′ , E1Σ ′))
can be seen as the Jacobi structure induced onΣ (respectivelyΣ ′) by the homogeneous
Poisson structure(Λ1, T ), Λ#

1 = NΛ#
0, of M. Then, fromProposition 2.8, there existsa ∈

C∞(Σ,R) that never vanishes onΣ , and a diffeomorphismφ of a neighbourhood ofp inΣ

onto a neighbourhood ofp′ inΣ ′ mapping : (i) the pair((Λa
0Σ,Ea

0Σ), (Λa
1Σ,Ea

1Σ)) of com-
patible Jacobi structures,a-conformal to((Λ0Σ,E0Σ), (Λ1Σ,E1Σ)), to ((Λ0Σ ′ , E0Σ ′),
(Λ1Σ ′ , E1Σ ′)) and (ii)p to p′.

As it was shown inProposition 2.11, ((Λa
0Σ,Ea

0Σ), (Λa
1Σ,Ea

1Σ)) possesses a recur-
sion operatorNa

Σ := (Na
Σ, Y a

Σ, γ a
Σ, gaΣ). It is not difficult to check thatφ takesNa

Σ :=
(Na

Σ, Y a
Σ, γ a

Σ, gaΣ) toNΣ ′ := (NΣ ′ , YΣ ′ , γΣ ′ , gΣ ′), i.e. at each pointx of the considered
neighbourhood ofp in Σ ,

NΣ ′(φ(x)) = Txφ ◦ Na
Σ(x) ◦ (Txφ)

−1, YΣ ′(φ(x)) = Txφ(Y
a
Σ(x)),

γΣ ′(φ(x)) = (tTxφ)
−1(γ a

Σ(x)), gΣ ′(φ(x)) = gaΣ(x).
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So, φ maps the Jacobi–Nijenhuis structure((Λa
0Σ,Ea

0Σ),Na
Σ) to ((Λ0Σ ′ , E0Σ ′),

NΣ ′). �

Proposition 2.16. With any Jacobi–Nijenhuis manifold(M, (Λ0, E0),N ), N := (N, Y,

γ, g), we may associate a homogeneous Poisson–Nijenhuis manifold(M̃, Λ̃0, Ñ, T̃ ) by
setting

M̃ = M × R, Λ̃0 = e−t

(
Λ0 + ∂

∂t
∧ E0

)
,

Ñ = N + Y ⊗ dt + ∂

∂t
⊗ γ + g

∂

∂t
⊗ dt, T̃ = ∂

∂t
,

wheret is the canonical coordinate on the factorR.
The Jacobi–Nijenhuis structure induced onM, considered as an one-codimensional sub-

manifold ofM̃ transverse toT̃ , by the homogeneous Poisson–Nijenhuis structure ofM̃, in
the sense ofProposition 2.12, is the one given initially.

Proof. The facts that(Λ̃0, T̃ ) endowsM̃ with a homogeneous Poisson structure and thatÑ

is a Nijenhuis tensor oñM are well known, respectively, fromPropositions 2.5 and 2.10. So,
it is enough to check the compatibility of these structures; conditionL

T̃
Ñ = 0 obviously

holds.
It is easy to prove that

ÑΛ̃
#
0 = Λ̃

#
0

tÑ

if and only if relations(25)–(27)hold. Hence,

N ◦ (Λ0, E0)
# = (Λ0, E0)

# ◦ tN⇔ ÑΛ̃
#
0 = Λ̃

#
0

tÑ .

On the other hand, whenEqs. (25)–(27)are satisfied, we can prove that

(Λ0, E0)
# ◦ C ((Λ0, E0),N) = 0 ⇔ Λ̃

#
0 ◦ C(Λ̃0, Ñ) = 0.

Therefore, from the compatibility of(Λ0, E0) with N, we deduce the compatibility of̃Λ0
with Ñ .

The proof of the second part of this proposition presents no difficulty. �

Remark 2.5. If (M, (Λ0, E0),N ) is a Jacobi–Nijenhuis manifold in the sense of the def-
inition given in[17], i.e. the torsionT(N ) of N only vanishes on the image of(Λ0, E0)

#,
then(Λ̃0, Ñ) defines a weak Poisson–Nijenhuis structure onM̃ in the sense of[18], i.e. the

Nijenhuis torsionT (Ñ) of Ñ only vanishes on the image of̃Λ
#
0.

FromProposition 2.16andRemark 2.4we conclude, as for the Poisson–Nijenhuis man-
ifolds, the following theorem.

Theorem 2.1 ([17]). A Jacobi–Nijenhuis structure((Λ0, E0),N ) on a differentiable man-
ifold M generates a hierarchy((Λk,Ek), k ∈ N) of pairwise compatible Jacobi structures
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on M. For all k ∈ N , (Λk,Ek) is the Jacobi structure associated with the vector bundle
map(Λk,Ek)

# : T ∗M × R → TM × R, (Λk,Ek)
# = N k ◦ (Λ0, E0)

#.
Furthermore, for all k, l ∈ N , the pair((Λk,Ek),N

l ) defines a Jacobi–Nijenhuis struc-
ture onM.

3. Part II

In this part of our work, we will establish some local models of homogeneous Poisson–
Nijenhuis structures (cf.Definition 2.7). We apply the technic developed in[26] for the local
classification of pairs of compatible symplectic forms, and we lean on the results established
in [21] and[23], by one of the authors, concerning the construction of canonical forms of
Poisson–Nijenhuis structures.

3.1. The regular locus of N

Let M be a differentiable manifold. We denote byKM [λ] the algebra of polynomials of
one variable with coefficients in the ringA(M,K) of theC∞-differentiable functions, if
M is a real manifold, or of the holomorphic functions onM, if M is a complex manifold. A
polynomialP of KM [λ] is said to beirreducible if it is irreducible at each point ofM, and
two polynomialsP andQ of KM [λ] are said to berelatively primeif they are relatively
prime at each point ofM.

LetN be a Nijenhuis tensor onM. It defines a section of the vector bundle Hom(TM,TM)

→ M, where Hom(TM,TM) denotes the bundle of the endomorphisms ofTM.

Definition 3.1. We say that the algebraic type ofN : M → Hom(TM,TM) is constant
on an open neighbourhoodU of a pointp ∈ M, if there exist irreducible polynomials
P1, . . . , Pr ∈ KU [λ], relatively prime, and positive integersnij , i = 1, . . . , r, j = 1, . . . , si ,
such that, at eachx ∈ U , (P

nij
i , i = 1, . . . , r, j = 1, . . . , si) is the family of the elementary

divisors ofN(x) : TxM → TxM.

From a geometrical point of view, the algebraic type ofN : M → Hom(TM,TM)

is constant onU if, at eachx ∈ U , TxU is expressed as a direct sum ofN(x)—cyclic
subspaces isomorphic to theN(p)—cyclic subspaces ofTpU .

Definition 3.2. The mapN : M → Hom(TM,TM) is said to be 0-deformable onU , if the
family (P

nij
i , i = 1, . . . , r, j = 1, . . . , si) of its elementary divisors does not depend on the

pointx ∈ U .

Of course, in the case whereN is 0-deformable onU , its algebraic type is constant on
U .

The set of points inM possessing an open neighbourhood on which the algebraic type
of N is constant, is an open dense subset ofM (cf. [21]).
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Definition 3.3 (Conditions of regularity). A pointp ∈ M is said to be regular with respect
to N if it possesses an open neighbourhoodU in M such that:

1. the algebraic type ofN is constant onU ;
2. the subspaces

Ex =
s⋂

i=1

kerdfi (x)

of TxU , x ∈ U , wheref1, . . . , fs are the functional coefficients of the irreducible factors
of the characteristic polynomialPN of N , define a distributionE of constant rank onU ;

3. the algebraic type of the restriction ofN to E is constant onU .

Definition 3.4. We call regular locus ofN , and we denote byRN , the set of the regular
points ofM with respect toN .

The setRN is an open dense subset ofM (cf. [21]).

3.2. Decomposition of homogeneous symplectic Poisson–Nijenhuis manifolds

Let (M,Λ0, N, T ) be a homogeneous symplectic Poisson–Nijenhuis manifold, i.e.Λ0 is
nondegenerate, fact that imposesM to have even dimension,LTΛ0 = −Λ0 andLTN = 0,
and letp be a point ofM having an open neighbourhoodU in M on which the algebraic
type ofN is constant. We denote byPN the characteristic polynomial ofN and we assume
that it is written onU as a productPN = P1 ·P2 of two polynomialsP1 andP2, relatively
prime, with leading coefficient 1. Let us setN1 = P1(N) andN2 = P2(N). Then,TU =
kerN1 ⊕ kerN2 and alsoTU = Im N2 ⊕ Im N1, because kerN1 = Im N2 and kerN2 =
Im N1. The vector bundle mapsNi : Im Ni → Im Ni , i = 1,2, are isomorphisms. Also,
T ∗U = Im tN2 ⊕ Im tN1, wheretNi = Pi (tN) is the transpose ofNi , i = 1,2.

Lemma 3.1. The vector subbundlesIm Ni , i = 1,2, are involutive.

Proof. Let X andY be two sections of ImN1. SinceN1 : Im N1 → Im N1 is an isomor-
phism,X = N1V andY = N1W , whereV andW are also two sections of ImN1. Then,
[X, Y ] = [N1V,N1W ] = T (N1)(V ,W) + N1[N1V,W ] + N1[V,N1W ] − N2

1 [V,W ].
But, T (N1)(V ,W) = ∑m

r=0(αr(V )NrW − αr(W)NrV ), whereαr , r = 1, . . . , m, are
one-forms, and soT (N1)(V ,W) is a section of ImN1, becauseV andW are sections of
Im N1. Consequently, [X, Y ] is a section of ImN1, and the involutivity of ImN1 is proved.

Analogously, one proves the involutivity of ImN2. �

Then, ImN1 and ImN2 define two complementary foliations ofU . Consequently, on a
convenient neighbourhood ofp, M is identified with a productM ′ ×M ′′ of two manifolds;
M ′ (respectivelyM ′′) is represented by the set of the leaves of the foliation defined by ImN1
(respectively ImN2). Hence,TM′ = Im N2 = kerN1 andTM′′ = Im N1 = kerN2.
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Lemma 3.2. For all k ∈ N , Λk(Im tN2, Im tN1) = 0, whereΛk is the Poisson tensor
associated with the vector bundle mapΛ#

k : T ∗M → TM, Λ#
k = NkΛ#

0.

Proof. For allα, β one-forms onU ,

Λk(
tN2α,

tN1β)=Λk(P2(
tN)α,P1(

tN)β) = Λk(P1(
tN)P2(

tN)α, β)

=Λk(PN(tN)α, β) = 0,

becausePN is an annihilator polynomial oftN . �

Proposition 3.1. Keeping the same assumptions and notations as above, the homogeneous
symplectic Poisson–Nijenhuis manifold(M,Λ0, N, T ) is identified, on a neighbourhood
of p, with the product(M ′,Λ′

0, N
′, T ′) × (M ′′,Λ′′

0, N
′′, T ′′) of homogeneous symplectic

Poisson–Nijenhuis manifolds.

Proof. FromLemma 3.2, the tensor fieldsΛk, k ∈ N , are locally expressed as

Λk =
∑

1≤i<j≤n1

fkij
∂

∂xi
∧ ∂

∂xj
+

∑
1≤l<m≤n2

gklm
∂

∂yl
∧ ∂

∂ym
,

where(x1, . . . , xn1), n1 = dimM ′, (respectively(y1, . . . , yn2), n2 = dimM ′′), is a local
coordinate system ofM ′ (respectivelyM ′′). SinceΛk, k ∈ N , are pairwise compatible
Poisson tensors, their associated Poisson brackets{, }k, k ∈ N , verify the Jacobi identity
and the generalized Jacobi identity. Applying these identities to the coordinate functions,
we prove that, for allk ∈ N , fkij , 1 ≤ i < j ≤ n1, only depend onx-coordinates andgklm,
1 ≤ l < m ≤ n2, only depend ony-coordinates (cf.[21]).

Let us set, for allk ∈ N ,

Λ′
k =

∑
1≤i<j≤n1

fkij
∂

∂xi
∧ ∂

∂xj
and Λ′′

k =
∑

1≤l<m≤n2

gklm
∂

∂yl
∧ ∂

∂ym
.

Λ′
k (respectivelyΛ′′

k ), k ∈ N , define onM ′ (respectivelyM ′′) a hierarchy of pairwise com-
patible Poisson tensors, withΛ′

0 (respectivelyΛ′′
0) nondegenerate onM ′ (respectivelyM ′′),

whose recursion operatorN ′ (respectivelyN ′′) is the projection ofN |Im N2 (respectively
N |Im N1) on ImN2 (respectively ImN1). The characteristic polynomial ofN ′ (respectively
N ′′) isP1 (respectivelyP2).

From this decomposition, the homothety vector fieldT is written as

T = T ′ + T ′′,

whereT ′ (respectivelyT ′′) is a vector field tangent toM ′ (respectivelyM ′′), i.e. in the
(x, y) product coordinates ofM = M ′ × M ′′,

T ′ =
n1∑
i=1

ai(x, y)
∂

∂xi
and T ′ =

n2∑
l=1

bl(x, y)
∂

∂yl
.
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So,LTΛ0 = −Λ0 if and only if

LT ′Λ′
0 = [T ′,Λ′

0] = −Λ′
0, (56)

LT ′′Λ′′
0 = [T ′′,Λ′′

0] = −Λ′′
0, (57)

LT ′Λ′′
0 + LT ′′Λ′

0 = [T ′,Λ′′
0] + [T ′′,Λ′

0] = 0, (58)

andLTΛ1 = −Λ1 (cf. Remark 2.3) if and only if

LT ′Λ′
1 = [T ′,Λ′

1] = −Λ′
1, (59)

LT ′′Λ′′
1 = [T ′′,Λ′′

1] = −Λ′′
1, (60)

LT ′Λ′′
1 + LT ′′Λ′

1 = [T ′,Λ′′
1] + [T ′′,Λ′

1] = 0. (61)

SinceΛ′
0 andΛ′′

0 are nondegenerate, respectively, onM ′ andM ′′, taking into account
Eqs. (56), (57), (59) and (60), and the fact thatΛ′

1 = N ′Λ′
0 andΛ′′

1 = N ′′Λ′′
0, we conclude

that

LT ′N ′ = 0 and LT ′′N ′′ = 0. (62)

So,LTN = 0 if and only if

LT ′N ′′ + LT ′′N ′ = 0. (63)

But, the local expressions ofLT ′N ′′ andLT ′′N ′ only have, respectively, terms of type
∂/∂x ⊗ dyand∂/∂y ⊗ dx. Then,Eq. (63)holds if and only if

LT ′N ′′ = 0 and LT ′′N ′ = 0. (64)

Consequently, conditions(58), (61) and (64)give

LT ′Λ′′
1 + LT ′′Λ′

1 =LT ′N ′′ · Λ′′
0 + N ′′ · LT ′Λ′′

0 + LT ′′N ′ · Λ′
0 + N ′ · LT ′′Λ′

0

=N ′′ · LT ′Λ′′
0 + N ′ · LT ′′Λ′

0 = N ′′ · LT ′Λ′′
0 − N ′ · LT ′Λ′′

0

= (N ′′ − N ′) · LT ′Λ′′
0 = 0.

Thus, we obtain that, out of the singular locus ofN ′ andN ′′,

LT ′Λ′′
0 = 0, (65)

and, on account ofEq. (58),

LT ′′Λ′
0 = 0. (66)

After a straightforward computation, we find that, in(x, y)-coordinates,Eqs. (65) and (66)
have, respectively, the matricial expressions

Λ′′
0 ·




∂a1

∂y1
. . .

∂an1

∂y1
...

...

∂a1

∂yn2

. . .
∂an1

∂yn2


 = 0 and Λ′

0 ·




∂b1

∂x1
. . .

∂bn2

∂x1
...

...

∂b1

∂xn1

. . .
∂bn2

∂xn1


 = 0.
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SinceΛ′′
0 andΛ′

0 are nondegenerate, respectively, onM ′′ andM ′, the above equations imply
that, out of the singular locus ofN ′ andN ′′, the functional coefficientsai , i = 1, . . . , n1,
of T ′ only depend on thex-coordinates and the functional coefficientsbl , l = 1, . . . , n2,
of T ′′ only depend on they-coordinates. From the continuity ofai , i = 1, . . . , n1, andbl ,
l = 1, . . . , n2, onM, the above result holds on any neighbourhood ofp in M.

FromEq. (56)(respectivelyEq. (57)) andEq. (62), we deduce thatT ′ (respectivelyT ′′)
is a homothety vector field of(Λ′

0, N
′) (respectively(Λ′′

0, N
′′)). �

3.3. Local models of homogeneous symplectic Poisson–Nijenhuis manifolds

Let (Λ0, N, T ) be a homogeneous symplectic Poisson–Nijenhuis structure defined on a
differentiable manifoldM of dimension 2n. From the results of the previous paragraph, the
problem of constructing a local model of(Λ0, N, T ) reduces to the search of the normal
form of these tensor fields in the particular case wherePN is a power of an irreducible
polynomial. The possible case are:

1. PN(λ) = (λ + f )2n;
2. PN(λ) = (λ2 + gλ + h)n, (this case arises ifM is a real manifold).

Studying the two cases separately, we establish in[21] the following theorems.

Theorem 3.1. Let (Λ0, N) be a symplectic Poisson–Nijenhuis structure defined on a dif-
ferentiable manifoldM (real or complex) of dimension 2n, andp a regular point ofM
with respect toN . If the characteristic polynomial ofN is of typePN(λ) = (λ+ f )2n and
df(p) �= 0, then there exists an open neighbourhoodU of p in M with local coordinates
((xij ), y1, y2), i = 1, . . . , m, j = 1, . . . ,2ri , r1 ≥ · · · ≥ rm, wherey2 = f −a, a = f (p),
centered atp, in which(Λ0, N) has the following expression:

Λ0 =
m∑
i=1

(
ri∑

k=1

∂

∂xi2k−1

∧ ∂

∂xi2k

)
+ ∂

∂y1
∧ ∂

∂y2
, (67)

N = −(y2 + a)Id + H + ∂

∂y1
⊗ α − Z ⊗ dy2, (68)

where

H =
m∑
i=1


ri−1∑

k=1

(
∂

∂xi2k−1

⊗ dxi2k+1 + ∂

∂xi2k+2

⊗ dxi2k

) , (69)

α = dx1
2 +

m∑
i=1

(
ri∑

k=1

[(
k − 1

2

)
xi2kdxi2k−1 +

(
k + 1

2

)
xi2k−1dxi2k

])
, (70)

Z = ∂

∂x1
1

+
m∑
i=1

(
ri∑

k=1

[(
k + 1

2

)
xi2k−1

∂

∂xi2k−1

−
(
k − 1

2

)
xi2k

∂

∂xi2k

])
. (71)

If df(p) = 0, the above expressions do not include they1 andy2 coordinates.
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Idea of proof. After the determination in[21] of the canonical form of a nondegenerate
bivector defined on a 2n-dimensional vector spaceV and of an endomorphism ofV , and
also of a symplectic Poisson–Nijenhuis structure depending on a parameter whose recursion
operator is nilpotent and 0-deformable, with respect to the parameter too, we construct the
model of(Λ0, N) as follows.

If df(p) = 0, sincep ∈ RN , f is constant onU and (Λ0, N + fId) defines onU
a symplectic Poisson–Nijenhuis structure whose recursion operator is 0-deformable and
nilpotent. Then, its model is well known from the precedents and from it we easily deduce
the normal form of(Λ0, N).

If df(p) �= 0, we consider the pair(Λ0, N + fId) of tensor fields that induces on the
integral manifolds of the quotient bundle kerdf/Xf , whereXf = Λ#

0(df ), a symplectic
Poisson–Nijenhuis structure depending parametrically onf whose recursion operator is
nilpotent and 0-deformable, with respect to the parameter too. For all values of the parame-
terf , the model of the induced structure is well known from the previous study. From this
model, we establish the normal form of(Λ0, N), presented byTheorem 3.1. In the local ex-
pressions ((67)–(71)) of (Λ0, N), m denotes the number of the(N + fId)(x)-invariant
subspaces in which the quotient space kerdf(x)/Xf (x), x ∈ U , is decomposed; the
ith-subspace,i = 1, . . . , m, is decomposed into two(N + fId)(x)-cyclic subspaces, both
of dimensionri ; y2 = f − a, a = f (p), andy1 is chosen in such a way that∂/∂y1 = Xf .

The models are completely determined by the algebraic type ofN . �

When PN(λ) = (λ + f )2n and df(p) �= 0, we find that, in the coordinates of
Theorem 3.1,

Λ1 = −(y2 + a)Λ0 + Π + Z ∧ ∂

∂y1
, (72)

where

Π =
m∑
i=1


ri−1∑

k=1

∂

∂xi2k−1

∧ ∂

∂xi2k+2


 , (73)

and that a representative of the homothety vector fieldT of (Λ0, N) is the vector field

T = 2

3

∂

∂x1
1

+
m∑
i=1

(
ri∑

k=1

xi2k−1
∂

∂xi2k−1

)
+ y1

∂

∂y1
; (74)

it is a model ofT , modulo the addition of an infinitesimal Poisson automorphismX of
Λ0 such thatLXN = 0. We remark that, ifdf(p) = 0, Eqs. (72) and (74)do not include
coordinatesy1 andy2.

In the case wherePN(λ) = (λ2 + gλ + h)n, with g2 − 4h strictly negative on a neigh-
bourhoodU of p in M, the construction of the models is based on: (i) The existence onU

of a complex structureJ , i.e.J 2 = −Id and its Nijenhuis torsion identically vanishes.J is
the semi-simple part of the operatorN0 = 2(4h− g2)−1/2N + g(4h− g2)−1/2Id, so there
exists a polynomialQ ∈ KU [λ] with constant coefficients, becauseN0 is 0-deformable,
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such thatJ = Q(N0), i.e.J is a polynomial operator ofN whose coefficients are functions
depending ong andh (cf. [24]); (ii) The following lemma.

Lemma 3.3 ([21]). Under the same assumptions and notations as above, let Λ̄0 (respec-

tivelyΛ̄1) be the tensor field associated with the vector bundle mapΛ̄
#
0 = JΛ#

0 (respectively

Λ̄
#
1 = JΛ#

1). Then, Λ̄0 (respectivelyΛ̄1) is a Poisson tensor compatible withΛ0 (respec-

tivelyΛ1), andΛ̂0 = Λ0 − iΛ̄0 (respectivelyΛ̂1 = Λ1 − iΛ̄1) is a holomorphic complex
Poisson tensor.

Furthermore, (Λ̂0, Λ̂1) is a pair of compatible holomorphic complex Poisson tensors.

We remark that the recursion operator of(Λ̂0, Λ̂1) is alsoN that is holomorphic. More-
over, the regular locus ofN , seen as a holomorphic tensor field, coincide with the one ofN ,
seen as a real tensor field, and its characteristic polynomial isP̂N(λ) = (λ + f )n, where
f = (1/2)[g − i(4h− g2)1/2] is a holomorphic function. So, there exists a neighbourhood
U of p in M with local complex coordinates((zjl ), w1, w2), j = 1, . . . , m, l = 1, . . . ,2rj ,
r1 ≥ · · · ≥ rm, centered atp, in whichΛ̂0 andΛ̂1 are given, respectively, by(67) and (72).
If ((xjl ), u1, u2; (yjl ), v1, v2), j = 1, . . . , m, l = 1, . . . ,2rj , r1 ≥ · · · ≥ rm, is the system
of real coordinates onU associated with the complex one, after making the convenient
replacements in the obtained expressions ofΛ̂0 andΛ̂1, we take their real parts. Hence,
we obtain a normal form of(Λ0,Λ1) and, consequently, ofN . They are presented in next
theorem.

Theorem 3.2. Let (Λ0, N) be a symplectic Poisson–Nijenhuis structure defined on a
real differentiable manifoldM of dimension 2n, and p a regular point ofM with re-
spect toN . If the characteristic polynomial ofN is of typePN(λ) = (λ2 + gλ + h)n,
with g2 − 4h locally strictly negative, then there exists an open neighbourhoodU of p
in M with local coordinates((xjl ), u1, u2; (yjl ), v1, v2), j = 1, . . . , m, l = 1, . . . ,2rj ,
r1 ≥ · · · ≥ rm, centered atp, in which the tensors fieldsΛ0 and N are expressed as
follows:

Λ0 =
m∑

j=1

[ rj∑
k=1

1

4

(
∂

∂x
j

2k−1

∧ ∂

∂x
j

2k

− ∂

∂y
j

2k−1

∧ ∂

∂y
j

2k

)]

+ 1

4

(
∂

∂u1
∧ ∂

∂u2
− ∂

∂v1
∧ ∂

∂v2

)
, (75)

N = −(u2 + a)Id − (v2 + b)J + Hx + Hy + ∂

∂u1
⊗ (αx − αy)

+ ∂

∂v1
⊗ (αx + αy) − Zx ⊗ (du2 + dv2) − Zy ⊗ (du2 − dv2), (76)

wherea = Reâ, b = Im â, (â = f (p)),
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J =
∑
j,l

(
∂

∂y
j
l

⊗ dxjl − ∂

∂x
j
l

⊗ dyjl

)
− ∂

∂u1
⊗ dv1 − ∂

∂u2
⊗ dv2

+ ∂

∂v1
⊗ du1 + ∂

∂v2
⊗ du2,

Hx =
m∑

j=1


rj−1∑

k=1

(
∂

∂x
j

2k−1

⊗ dxj2k+1 + ∂

∂x
j

2k+2

⊗ dxj2k

)
 ,

Hy =
m∑

j=1


rj−1∑

k=1

(
∂

∂y
j

2k−1

⊗ dyj2k+1 + ∂

∂y
j

2k+2

⊗ dyj2k

)
 ,

αx = dx1
2 +

m∑
j=1

( rj∑
k=1

[(
k − 1

2

)
x
j

2kdxj2k−1 +
(
k + 1

2

)
x
j

2k−1dxj2k

])
,

αy =
m∑

j=1

( rj∑
k=1

[(
k − 1

2

)
y
j

2kdyj2k−1 +
(
k + 1

2

)
y
j

2k−1dyj2k

])
,

Zx = ∂

∂x1
1

+
m∑

j=1

( rj∑
k=1

[(
k + 1

2

)
x
j

2k−1
∂

∂x
j

2k−1

−
(
k − 1

2

)
x
j

2k
∂

∂x
j

2k

])
,

Zy =
m∑

j=1

( rj∑
k=1

[(
k + 1

2

)
y
j

2k−1
∂

∂y
j

2k−1

−
(
k − 1

2

)
y
j

2k
∂

∂y
j

2k

])
.

After a long computation, we show that, in the coordinates ofTheorem 3.2,

T = 2

3

∂

∂x1
1

+
m∑

j=1

rj∑
k=1

(
x
j

2k−1
∂

∂x
j

2k−1

+ y
j

2k−1
∂

∂y
j

2k−1

)
+ u1

∂

∂u1
+ v1

∂

∂v1
(77)

is a representative of the homothety vector fieldT of (Λ0, N), modulo the addition of an
infinitesimal Poisson automorphismX of Λ0 such thatLXN = 0.

From this study, we conclude the following theorem.

Theorem 3.3. Let (Λ0, N, T ) be a homogeneous symplectic Poisson–Nijenhuis structure
defined on a differentiable manifoldM of dimension2n. Then, on a neighbourhood of each
regular pointp of M with respect toN , the model of(M,Λ0, N, T ) is a finite product
of homogeneous symplectic Poisson–Nijenhuis manifolds whose recursion operator has as
characteristic polynomial a power of an irreducible polynomial.

If M is a complex manifold, the Poisson–Nijenhuis structure’s model of each factor of
this product is given byTheorem 3.1and the model of the corresponding homothety vector
field is given byEq. (74), modulo the addition of an infinitesimal Poisson biautomorphism
of the factor’s Poisson–Nijenhuis structure.
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If M is a real manifold, the Poisson–Nijenhuis structure’s model of each factor of this
product is given byTheorem 3.1or Theorem 3.2, according to the type of the characteristic
polynomial of the factor’s recursion operator,and the model of the corresponding homothety
vector field is given, respectively, byEq. (74)or (77), modulo the addition of an infinitesimal
Poisson biautomorphism of the factor’s Poisson–Nijenhuis structure.

The models are completely determined by the family of the elementary divisors ofN .
(We notice that each elementary divisor appears an even number of times in this family.)

3.4. Local models of homogeneous Poisson–Nijenhuis manifolds of odd dimension

Let (Λ0, N, T ) be a homogeneous Poisson–Nijenhuis structure defined on a(2n + 1)-
dimensional differentiable manifoldM, withΛ0 of maximum rank on an open dense subset
of M. Using the results on: (i) the local models of symplectic Poisson–Nijenhuis structures
(seeSection 3.3and[21]); (ii) the symplectization of a Poisson–Nijenhuis structure (see
[22]) and (iii) the reduction of a Poisson–Nijenhuis structure (see[28,18]), we establish in
[23] the following theorem.

Theorem 3.4. Under the same assumptions and notations as above, on a neighbourhood
of each pointp ∈ RN such thatcorankΛ0(p) = 1, the model of(M,Λ0, N) is a product
of a Poisson–Nijenhuis manifold(M ′,Λ′

0, N
′) of odd dimension2l − 1, l ≤ n + 1, whose

Nijenhuis tensorN ′ has a characteristic polynomial of typePN ′(λ) = (λ+ f )2l−1, and of
a symplectic Poisson–Nijenhuis manifold(M ′′,Λ′′

0, N
′′).

If p′ is the projection ofp onM ′ and df(p′) �= 0, then there exists an open neighbourhood
U ′ of p′ in M ′ with local coordinates((x′i

j ), y
′), i = 1, . . . , m, j = 1, . . . ,2ri , r1 ≥ · · · ≥

rm, y′ = f − a′, a′ = f (p′), centered atp′, such that

Λ′
0 =

m∑
i=1

(
ri∑

k=1

∂

∂x′i
2k−1

∧ ∂

∂x′i
2k

)
, (78)

N ′ = −(y′ + a′)Id + H ′ − Z′ ⊗ dy′, (79)

whereH ′ andZ′ are given, in these coordinates, respectively, by Eqs. (69) and (71). If
df(p′) = 0, expressions(78) and (79)and also those ofH ′ andZ′ do not include coordi-
natesx′m

2rm
andy′.

If p′′ is the projection ofp onM ′′, the normal form of the tensor fieldsΛ′′
0 andN ′′, on

an open neighbourhood ofp′′ in M ′′, is presented byTheorem 3.3.
The model of(M,Λ0, N) is completely determined by the family of the elementary

divisors ofN .
(In formulæ (78) and (79), m and ri , i = 1, . . . , m, have the same meaning as in

Theorem 3.1.)

Let (x′′
k ), k = 1, . . . ,dimM ′′, be a system of local coordinates ofM ′′, centered atp′′, in

which(Λ′′
0, N

′′) has the model’s expression (cf.Theorem 3.3). Because of the identification
(M,Λ0, N) = (M ′,Λ′

0, N
′)× (M ′′,Λ′′

0, N
′′) on an open neighbourhoodU of p in M, the
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homothety vector fieldT is written, in the local coordinate product system((x′i
j ), y

′; x′′
k ),

i = 1, . . . , m, j = 1, . . . ,2ri , r1 ≥ · · · ≥ rm, k = 1, . . . ,dimM ′′, of M = M ′ × M ′′, as

T = T ′ + T ′′,

where

T ′ =
m∑
i=1

2ri∑
j=1

aij (x
′, y′; x′′)

∂

∂x′i
j

+ b(x′, y′; x′′)
∂

∂y′ and

T ′′ =
dimM ′′∑
k=1

ck(x
′, y′; x′′)

∂

∂x′′
k

are, respectively, vector fields tangent toM ′ andM ′′. Since(Λ0, N, T ) is a homogeneous
Poisson–Nijenhuis structure,LTΛ0 = −Λ0, LTN = 0 andLTΛ1 = −Λ1, Λ#

1 = NΛ#
0.

But,Λi = Λ′
i + Λ′′

i , i = 0,1. Hence,LTΛ0 = −Λ0 if and only if

LT ′Λ′
0 = [T ′,Λ′

0] = −Λ′
0, (80)

LT ′′Λ′′
0 = [T ′′,Λ′′

0] = −Λ′′
0, (81)

LT ′Λ′′
0 + LT ′′Λ′

0 = [T ′,Λ′′
0] + [T ′′,Λ′

0] = 0, (82)

andLTΛ1 = −Λ1 if and only if

LT ′Λ′
1 = [T ′,Λ′

1] = −Λ′
1, (83)

LT ′′Λ′′
1 = [T ′′,Λ′′

1] = −Λ′′
1, (84)

LT ′Λ′′
1 + LT ′′Λ′

1 = [T ′,Λ′′
1] + [T ′′,Λ′

1] = 0. (85)

SinceΛ′′
0 is nondegenerate onM ′′, Eqs. (81) and (84)yield

LT ′′N ′′ = 0. (86)

Therefore,LTN = 0 if and only if

LT ′N ′ + LT ′N ′′ + LT ′′N ′ = 0. (87)

Furthermore, in the coordinate product system considered above, the matricial expressions
of LT ′N ′, LT ′N ′′ andLT ′′N ′ are, respectively, of type:

LT ′N ′ =
(
A B

0 0

)
, LT ′N ′′ =

(
0 Γ

0 0

)
and LT ′′N ′ =

(
0 0

∆ 0

)
.

So,Eq. (87)holds if and only if

LT ′N ′ + LT ′N ′′ = 0 and LT ′′N ′ = 0. (88)
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Taking into account the second condition ofEq. (88), Eq. (85)implies

LT ′Λ′′
1 + LT ′′Λ′

1 =LT ′N ′′ · Λ′′
0 + N ′′ · LT ′Λ′′

0 + LT ′′N ′ · Λ′
0 + N ′ · LT ′′Λ′

0

=LT ′N ′′ · Λ′′
0 + N ′′ · LT ′Λ′′

0 + N ′ · LT ′′Λ′
0 = 0. (89)

Considering the local expressions of the terms of left member ofEq. (89), we conclude that
this equality holds if and only if

LT ′N ′′ · Λ′′
0 + N ′ · LT ′′Λ′

0 = 0 and N ′′ · LT ′Λ′′
0 = 0.

So, out of the singular locus ofN ′′,

LT ′Λ′′
0 = 0 (90)

and, because ofEq. (82),

LT ′′Λ′
0 = 0. (91)

After a direct computation, we find that, in the considered local coordinate product system,
Eqs. (90) and (91)are expressed, in terms of matrices, respectively, as

Λ′′
0 ·
(
∂(aij , b)

∂x′′

)
= 0 (92)

and

Λ′
0 ·
(

∂ck

∂(x′, y′)

)
= 0. (93)

SinceΛ′′
0 is nondegenerate onM ′′, Eq. (92)means that, out of the singular locus ofN ′′,

the functional coefficients ofT ′, aij , i = 1, . . . , m, j = 1, . . . ,2ri , r1 ≥ · · · ≥ rm, andb,
only depend on thex′ andy′ coordinates. Because of the continuity of these functions on
M, the above result hold on any neighbourhood ofp in M. On the other hand, since the re-
striction ofΛ′

0 to its symplectic leaves, defined by the equationy′ = constant, is inversible
on these leaves,Eq. (93)implies that, out of the singular locus ofN ′′, the functional coef-
ficients ofT ′′, ck, k = 1, . . . ,dimM ′′, only depend on they′ andx′′ coordinates. Because
these functions are continuous onM, the above conclusion holds on any neighbourhood of
p in M

Of course,T ′ andT ′′ are, respectively, homothety vector fields of(Λ′
0, N

′) and(Λ′′
0, N

′′).
Let S0 be the symplectic leaf ofΛ0 throughp. Since(M,Λ0, N) = (M ′,Λ′

0, N
′) ×

(M ′′,Λ′′
0, N

′′), on a neighbourhood ofp, andΛ′′
0 is symplectic onM ′′, S0 = S′

0 × M ′′,
whereS′

0 is the symplectic leaf ofΛ′
0 throughp′. In the product coordinates((x′i

j ), y
′; x′′

k ),
i = 1, . . . , m, j = 1, . . . ,2ri , r1 ≥ · · · ≥ rm, k = 1, . . . ,dimM ′′, of M = M ′ × M ′′,
S0 andS′

0 are determined by the same equationy′ = 0. The functions((x′i
j ); x′′

k ), i =
1, . . . , m, j = 1, . . . ,2ri , r1 ≥ · · · ≥ rm, k = 1, . . . ,dimM ′′, define onS0 = S′

0 × M ′′
a coordinate product system. IfT = T ′ + T ′′ is tangent toS0, i.e. b(x′, y′; x′′) = 0,
thenT ′ is tangent toS′

0, and reciprocally. In this case,T is a homothety vector field of
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the symplectic Poisson–Nijenhuis structure induced onS0 by (Λ0, N) and so isT ′ for the
symplectic Poisson–Nijenhuis structure induced onS′

0 by (Λ′
0, N

′). The recursion operator
of the latter structure is 0-deformable and its characteristic polynomial is(λ + f )2l−2.
Consequently, in the considered case, the local expression ofT ′, in coordinates(x′i

j ), i =
1, . . . , m, j = 1, . . . ,2ri , r1 ≥ · · · ≥ rm, of S′

0, is

T ′ = 2

3

∂

∂x′1
1

+
m∑
i=1

(
ri∑

k=1

x′i
2k−1

∂

∂x′i
2k−1

)
, (94)

modulo the addition of an infinitesimal Poisson biautomorphism of(Λ′
0,Λ

′
1),Λ

′#
1 = N ′Λ′#

0 ,
tangent toS′

0 (cf. Eq. (74)and the remark that follows). The local expression ofT ′′, in
coordinates(x′′

k ), k = 1, . . . ,dimM ′′, of M ′′, is well determined byTheorem 3.3.

4. Part III

In the third and last part of this work, we are going to study the problem of constructing
a normal form of the tensor fields of a Jacobi–Nijenhuis structure((Λ0, E0),N ), N :=
(N, Y, γ, g), defined on a finite dimensional differentiable manifoldM. In order to estab-
lish these forms, we consider the homogeneous Poisson–Nijenhuis structure(Λ̃0, Ñ, T̃ )

defined onM̃ = M × R from ((Λ0, E0),N ) (cf. Proposition 2.16). In the case where
Λ̃0 is of maximum rank onM̃ (or on an open dense subset ofM̃) andT̃ is tangent to the
symplectic leaves of̃Λ0 (of course, this always happen whenΛ̃0 is symplectic), the local
model of(Λ̃0, Ñ, T̃ ), on an open neighbourhood of a regular pointp̃ of M̃ with respect
to Ñ , is well determined, according to the parity of the dimension ofM̃, by Theorems 3.3
and 3.4and by formula(94). Then, taking: (i) an one-codimensional submanifoldΣ of M̃
transverse to the homothety vector fieldT̃ ; (ii) a functiona defined on a tubular neighbour-
hoodŨ of Σ in M̃, equal to 1 onΣ and homogeneous of degree 1 with respect toT̃ , and
(iii) the pair (Λ̃

a

0, Ẽ
a

0) that defines onŨ the Jacobi structure which isa-conformal to the
Poisson structure’s model, and computing: (i) the projection of(Λ̃

a

0, Ẽ
a

0) onΣ parallel to
the integral curves of the model ofT̃ , and (ii) from the model ofÑ , the Nijenhuis operator
induced onΣ , we obtain onΣ a Jacobi–Nijenhuis model structure (cf.Proposition 2.12),
that, fromProposition 2.15, is equivalent to a Jacobi–Nijenhuis structure onM, conformal
to the one given initially. In this way, we end up establishing, on a neighbourhood of a point
p of M, which is the projection onM of a regular pointp̃ of M̃ with respect toÑ , a model
of a structure that is conformal to((Λ0, E0),N ), in the cases where:

1. M has odd dimension and(Λ0, E0) is transitive onM;
2. M has even dimension, say 2n, and the characteristic leafC0 of (Λ0, E0) throughp

has odd dimension, equal to 2n − 1, fact that imposes̃T = ∂/∂t to be tangent to the
corresponding symplectic leaf of̃Λ0 (cf. Section 2.2).

(We remark that the set of points inM that can be seen as projections of regular points
of M̃ with respect toÑ , is an open dense subset ofM, becauseR

Ñ
is an open dense subset

of M̃.)
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The case whereM has even dimension and(Λ0, E0) is transitive onM is going to be
treated separately inSections 4.2.

4.1. Local models of odd-dimensional Jacobi–Nijenhuis manifolds

Let ((Λ0, E0),N ), N := (N, Y, γ, g), be a transitive Jacobi–Nijenhuis structure de-
fined on a(2n + 1)-dimensional differentiable manifoldM and(Λ̃0, Ñ, T̃ ) its associated
homogeneous Poisson–Nijenhuis structure onM̃ = M × R (cf. Proposition 2.16). Since
Λ̃0 = e−t (Λ0 + (∂/∂t) ∧ E0), (t is the canonical coordinate on the factorR), is nonde-
generate onM̃, on a neighbourhood of each regular pointp̃ ∈ M̃ with respect toÑ =
N + Y ⊗ dt + (∂/∂t) ⊗ γ + g∂/∂t ⊗ dt, the model of(M̃, Λ̃0, Ñ, T̃ ) is a finite product
of homogeneous symplectic Poisson–Nijenhuis manifolds whose recursion operator has
as characteristic polynomial a power of an irreducible polynomial (cf.Theorem 3.3). In
what follows, this decomposition of(M̃, Λ̃0, Ñ, T̃ ) is going to be referred as the“model
decomposition”of (M̃, Λ̃0, Ñ, T̃ ). Letp be the projection of̃p onM. BecausẽT = (∂/∂t)

is transverse toM atp, at least one of the components of the decomposition ofT̃ is transverse
to M atp. Therefore, in order to construct a local model of((Λ0, E0),N ), we distinguish
and we study separately the following cases:

1. The recursion operator of the homogeneous symplectic Poisson–Nijenhuis structure
of the factor of the “model decomposition” of(M̃, Λ̃0, Ñ, T̃ ) corresponding to the
considered component of̃T , i.e. the component that is transverse toM at p, has a
characteristic polynomial of type(λ + f )2q , q ≤ n + 1.

2. The recursion operator of the homogeneous symplectic Poisson–Nijenhuis structure of
the factor of the “model decomposition” of(M̃, Λ̃0, Ñ, T̃ ) corresponding to the consid-
ered component of̃T , i.e. the component that is transverse toM atp, has a characteristic
polynomial of type(λ2 + f λ + h)q , q ≤ n + 1, with f 2 − 4h locally strictly negative.
(In order to avoid any confusion, in this paragraph, we will not useg as a coefficient of
the characteristic polynomial of the recursion operator because it appears as a coefficient
of Ñ .)

4.1.1. Study of Case 1
We denote by(M̃ ′, Λ̃′

0, Ñ
′, T̃ ′) the factor of the “model decomposition” of(M̃, Λ̃0, Ñ, T̃ )

whose homothety vector field̃T ′ is transverse toM atp, and we suppose that its recursion
operatorÑ ′ has a characteristic polynomial of typeP

Ñ ′(λ) = (λ+ f )2q , q ≤ n+ 1. Then,
on a neighbourhood of̃p in M̃, (M̃, Λ̃0, Ñ, T̃ ) = (M̃ ′, Λ̃′

0, Ñ
′, T̃ ′) × (M̃ ′′, Λ̃′′

0, Ñ
′′, T̃ ′′),

where(M̃ ′′, Λ̃′′
0, Ñ

′′, T̃ ′′) is the product of the other factors of the “model decomposition”
of (M̃, Λ̃0, Ñ, T̃ ). If p̃′ andp̃′′ are, respectively, the projections ofp̃ on M̃ ′ andM̃ ′′, the
normal form of(M̃ ′, Λ̃′

0, Ñ
′, T̃ ′), on a neighbourhood of̃p′ in M̃

′
, is given byTheorem 3.1

and Eq. (74), and the one of(M̃ ′′, Λ̃′′
0, Ñ

′′, T̃ ′′), on a neighbourhood of̃p′′ in M̃ ′′, by
Theorem 3.3.

Now, we suppose thatdf(p̃′) �= 0, and we consider a local coordinate system((x̃′i
j ), ỹ

′
1, ỹ

′
2),

i = 1, . . . , m, j = 1, . . . ,2ri , r1 ≥ · · · ≥ rm, of M̃ ′, whereỹ′
2 = f − ã′, ã′ = f (p̃′),

centered at̃p′, in which the tensor fields̃Λ′
0, Ñ ′ andT̃ ′ are written as their models(67), (68)



356 F. Petalidou, J.M. Nunes da Costa / Journal of Geometry and Physics 45 (2003) 323–367

and (74). An one-codimensional submanifold of̃M ′, transverse tõT ′ and passing bỹp′, is
the hypersurfaceΣ ′ of M̃ ′ defined by the equatioñx′1

1 = 0, (it can also be seen as the hyper-
surface of level 2/3 of the functional coefficientx̃′1

1 +2/3 of ∂/∂x̃′1
1 in the considered model

expression of̃T ′). Moreover, a functiona defined on a well chosen tubular neighbourhood
Ũ ′ of Σ ′ in M̃ ′, which vanishes nowhere oñU ′, equal to 1 onΣ ′ and homogeneous of
degree 1 with respect tõT ′, is the function

a((x̃′i
j ), ỹ

′
1, ỹ

′
2) = 3

2 x̃
′1
1 + 1.

We denote byπ ′ : Ũ ′ → Σ ′ the projection parallel to the integral curves ofT̃ ′, byTΣ ′π ′ :
TΣ ′Ũ ′ → TΣ ′ the associated vector bundle projection ofTΣ ′Ũ ′ onto its subbundleTΣ ′,
by tTΣ ′π ′ : T ∗Σ ′ → T ∗

Σ ′Ũ ′ the transpose ofTΣ ′π ′, and by(TΣ ′π ′)h the restriction of
TΣ ′π ′ to the horizontal subbundleTΣ ′ of TΣ ′Ũ ′, which is a bijection.

Let ((Λ′
0Σ ′ , E′

0Σ ′),N
′
Σ ′),N′

Σ ′ := (N ′
Σ ′ , Y ′

Σ ′ , γ ′
Σ ′ , g′

Σ ′), be the Jacobi–Nijenhuis struc-

ture induced onΣ ′ by the homogeneous symplectic Poisson–Nijenhuis structure(Λ̃′
0, Ñ

′, T̃ ′)
of M̃ ′ (cf. Proposition 2.12). One has

Λ′#
0Σ ′ = TΣ ′π ′ ◦ (aΛ̃′#

0 )|Σ ′ ◦ tTΣ ′π ′, (95)

E′
0Σ ′ = TΣ ′π ′(Λ̃′#

0 (da)|Σ ′), (96)

N ′
Σ ′ = TΣ ′π ′ ◦ Ñ ′|Σ ′ ◦ (TΣ ′π ′)−1

h , (97)

Y ′
Σ ′ = TΣ ′π ′((Ñ ′T̃ ′)|Σ ′), (98)

γ ′
Σ ′ = (tÑ ′da)

∣∣∣
Σ ′ −

〈
(tÑ ′da)|Σ ′ ,

∂

∂x̃′1
1

∣∣∣∣∣
Σ ′

〉
dx̃′1

1 |Σ ′ , (99)

g′
Σ ′ = 〈da|Σ ′ , (Ñ ′T̃ ′)|Σ ′ 〉. (100)

Their computation yields:

Λ′
0Σ ′ = −3

2

[
r1∑
k=2

x̃′1
2k−1

∂

∂x̃′1
2k−1

+
m∑
i=2

(
ri∑

k=1

x̃′i
2k−1

∂

∂x̃′i
2k−1

)
+ ỹ′

1
∂

∂ỹ′
1

]

∧ ∂

∂x̃′1
2

+
r1∑
k=2

∂

∂x̃′1
2k−1

∧ ∂

∂x̃′1
2k

+
m∑
i=2

(
ri∑

k=1

∂

∂x̃′i
2k−1

∧ ∂

∂x̃′i
2k

)
+ ∂

∂ỹ′
1

∧ ∂

∂ỹ′
2
,

(101)

E′
0Σ ′ = 3

2

∂

∂x̃′1
2

, (102)

N ′
Σ ′ = −(ỹ′

2 + ã′)IdΣ ′ − 3

2
T ′
Σ ′ ⊗ dx̃′1

3 + H ′
Σ ′ + ∂

∂ỹ′
1

⊗ α′
Σ ′

+
(

3

2
T ′
Σ ′ − Z′

Σ ′

)
⊗ dỹ′

2, (103)
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where−(3/2)T ′
Σ ′ is the projection of(∂/∂x̃′1

1 )|Σ ′ onTΣ ′ parallel toT̃ ′,

T ′
Σ ′ =

r1∑
k=2

x̃′1
2k−1

∂

∂x̃′1
2k−1

+
m∑
i=2

(
ri∑

k=1

x̃′i
2k−1

∂

∂x̃′i
2k−1

)
+ ỹ′

1
∂

∂ỹ′
1
, (104)

H ′
Σ ′ =

r1−1∑
k=2

(
∂

∂x̃′1
2k−1

⊗ dx̃′1
2k+1

)
+

r1−1∑
k=1

(
∂

∂x̃′1
2k+2

⊗ dx̃′1
2k

)

+
m∑
i=2


ri−1∑

k=1

(
∂

∂x̃′i
2k−1

⊗ dx̃′i
2k+1 + ∂

∂x̃′i
2k+2

⊗ dx̃′i
2k

)
 , (105)

α′
Σ ′ = dx̃′1

2 +
r1∑
k=2

[(
k − 1

2

)
x̃′1

2kdx̃
′1
2k−1 +

(
k + 1

2

)
x̃′1

2k−1dx̃
′1
2k

]

+
m∑
i=2

(
ri∑

k=1

[(
k − 1

2

)
x̃′i

2kdx̃
′i
2k−1 +

(
k + 1

2

)
x̃′i

2k−1dx̃
′i
2k

])
, (106)

Z′
Σ ′ =

r1∑
k=2

[(
k + 1

2

)
x̃′1

2k−1
∂

∂x̃′1
2k−1

]
−

r1∑
k=1

[(
k − 1

2

)
x̃′1

2k
∂

∂x̃′1
2k

]

+
m∑
i=2

(
ri∑

k=1

[(
k + 1

2

)
x̃′i

2k−1
∂

∂x̃′i
2k−1

−
(
k − 1

2

)
x̃′i

2k
∂

∂x̃′i
2k

])
, (107)

Y ′
Σ ′ =

r1−1∑
k=2

(
x̃′1

2k+1 − 3

2
x̃′1

3 x̃′1
2k−1

)
∂

∂x̃′1
2k−1

− 3

2
x̃′1

3 x̃′1
2r1−1

∂

∂x̃′1
2r1−1

+
m∑
i=2


ri−1∑

k=1

(
x̃′i

2k+1 − 3

2
x̃′1

3 x̃′i
2k−1

)
∂

∂x̃′i
2k−1


−

m∑
i=2

3

2
x̃′1

3 x̃′i
2ri−1

∂

∂x̃′i
2ri−1

+
(

1

3
x̃′1

2 +
r1∑
k=2

(
k−1

2

)
x̃′1

2k−1x̃
′1
2k

+
m∑
i=2

[
ri∑

k=1

(
k−1

2

)
x̃′i

2k−1x̃
′i
2k

]
−3

2
x̃′1

3 ỹ′
1

)
∂

∂ỹ′
1
, (108)

γ ′
Σ ′ = 3

2(dx̃
′1
3 − dỹ′

2), (109)

g′
Σ ′ = −(ỹ′

2 + ã′) + 3
2 x̃

′1
3 . (110)

(Taking into account the remark ofTheorem 3.1, if df(p̃′) = 0, the obtained local expressions
of the tensor fields of((Λ′

0Σ ′ , E′
0Σ ′),N

′
Σ ′) do not include thẽy′

1 andỹ′
2 coordinates.)



358 F. Petalidou, J.M. Nunes da Costa / Journal of Geometry and Physics 45 (2003) 323–367

Now, we consider a local coordinate systemx̃′′ of M̃ ′′, centered at̃p′′, in which(Λ̃′′
0, Ñ

′′,
T̃ ′′) has the expression of its model (seeTheorem 3.3), and the product system((x̃′i

j ), ỹ
′
1,

ỹ′
2; x̃′′), i = 1, . . . , m, j = 1, . . . ,2ri , r1 ≥ · · · ≥ rm, of M̃ = M̃ ′ × M̃ ′′, whereỹ′

2 =
f − ã′, ã′ = f (p̃′), centered at̃p = (p̃′, p̃′′). Furthermore, we take the submanifoldΣ =
Σ ′ × M̃ ′′ of M̃ = M̃ ′ × M̃ ′′ of codimension 1, transverse tõT ′ + T̃ ′′, defined, of course,
by x̃′1

1 = 0.
Let ((Λ0Σ,E0Σ),NΣ), NΣ := (NΣ, YΣ, γΣ, gΣ), be the Jacobi–Nijenhuis structure

induced onΣ = Σ ′×M̃ ′′ by the homogeneous symplectic Poisson–Nijenhuis product struc-
ture(Λ̃0, Ñ, T̃ ) = (Λ̃′

0, Ñ
′, T̃ ′) + (Λ̃′′

0, Ñ
′′, T̃ ′′) of M̃ = M̃ ′ × M̃ ′′ (cf. Propositions 2.12

and 2.14). FromProposition 2.14, one has

Λ0Σ = Λ′
0Σ ′ + Λ̃′′

0 − T̃ ′′ ∧ E′
0Σ ′ and E0Σ = E′

0Σ ′ , (111)

NΣ = N ′
Σ ′ + Ñ ′′ − T̃ ′′ ⊗ γ ′

Σ ′ , (112)

YΣ = Y ′
Σ ′ +

(
Ñ ′′ − g′

Σ ′ IdT M̃ ′′
)
T̃ ′′, (113)

γΣ = γ ′
Σ ′ , (114)

gΣ = g′
Σ ′ . (115)

The local expressions of the tensor fields((Λ′
0Σ ′ , E′

0Σ ′),N
′
Σ ′), N′

Σ ′ := (N ′
Σ ′ , Y ′

Σ ′ , γ ′
Σ ′ ,

g′
Σ ′), in the coordinates ofΣ ′, are given byEqs. (101)–(110), and those of(Λ̃′′

0, Ñ
′′, T̃ ′′),

in the considered coordinate systemx̃′′ of M̃ ′′, are known byTheorem 3.3. Hence, formulæ
(111)–(115)give us the local expression of the tensor fields of((Λ0Σ,E0Σ),NΣ),NΣ :=
(NΣ, YΣ, γΣ, gΣ), in the coordinate product system(x̃′1

2 , . . . , x̃′m
2rm

, ỹ′
1, ỹ

′
2; x̃′′) of Σ =

Σ ′ × M̃ ′′.

4.1.2. Study of Case 2
We work as inCase 1. We denote by(M̃ ′, Λ̃′

0, Ñ
′, T̃ ′) the factor of the “model decompo-

sition”of (M̃, Λ̃0, Ñ, T̃ ) whose homothety vector field̃T ′ is transverse toM atp, and we
assume that its recursion operatorÑ ′ has a characteristic polynomial of typeP

Ñ ′(λ) =
(λ2 + f λ + h)q , q ≤ n + 1, with f 2 − 4h locally strictly negative. Then, on a neighbour-
hood ofp̃ in M̃, (M̃, Λ̃0, Ñ, T̃ ) = (M̃ ′, Λ̃′

0, Ñ
′, T̃ ′)×(M̃ ′′, Λ̃′′

0, Ñ
′′, T̃ ′′), where(M̃ ′′, Λ̃′′

0,

Ñ ′′, T̃ ′′) is the product of the other factors of the “model decomposition” of(M̃, Λ̃0, Ñ, T̃ ).
If p̃′ and p̃′′ are, respectively, the projections ofp̃ on M̃ ′ andM̃ ′′, the normal form of
(M̃ ′, Λ̃′

0, Ñ
′, T̃ ′), on a neighbourhood of̃p′ in M̃ ′, is given byTheorem 3.2andEq. (77),

and the one of(M̃ ′′, Λ̃′′
0, Ñ

′′, T̃ ′′), on a neighbourhood of̃p′′ in M̃ ′′, by Theorem 3.3.

Let ((x̃′j
l ), ũ′

1, ũ
′
2, (ỹ

′j
l ), ṽ′

1, ṽ
′
2), j = 1, . . . , m, l = 1, . . . ,2rj , r1 ≥ · · · ≥ rm, be a

local coordinate system of̃M ′, centered at̃p′, in which the tensor fields̃Λ′
0, Ñ ′ andT̃ ′ are

expressed as their models (Eq. (75)–(77)). To the role of an one-codimensional submanifold
of M̃ ′ transverse tõT ′, we take the hypersurfaceΣ ′ of M̃ ′ throughp̃′ that is defined by the
equationx̃′1

1 = 0. A functiona defined on a well chosen tubular neighbourhoodŨ ′ of Σ ′

in M̃ ′, which never vanishes oñU ′, equal to 1 onΣ ′ and homogeneous of degree 1 with
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respect toT̃ ′, is the function

a((x̃
′j
l ), ũ′

1, ũ
′
2, (ỹ

′j
l ), ṽ′

1, ṽ
′
2) = 3

2 x̃
′1
1 + 1.

We denote byπ ′ : Ũ ′ → Σ ′ the projection parallel to the integral curves ofT̃ ′, byTΣ ′π ′ :
TΣ ′Ũ ′ → TΣ ′ the associated vector bundle projection ofTΣ ′Ũ ′ onto its subbundleTΣ ′,
by tTΣ ′π ′ : T ∗Σ ′ → T ∗

Σ ′Ũ ′ the transpose ofTΣ ′π ′, and by(TΣ ′π ′)h the restriction of
TΣ ′π ′ to the horizontal subbundleTΣ ′ of TΣ ′Ũ ′, which is a bijection.

Let ((Λ′
0Σ ′ , E′

0Σ ′),N
′
Σ ′), N′

Σ ′ := (N ′
Σ ′ , Y ′

Σ ′ , γ ′
Σ ′ , g′

Σ ′), be the Jacobi–Nijenhuis
structure induced onΣ ′ by the homogeneous symplectic Poisson–Nijenhuis structure
(Λ̃′

0, Ñ
′, T̃ ′) of M̃ ′ (cf. Proposition 2.12). The tensor fields defining this structure

are given, respectively, by the formulæ(95)–(100). In this case, their computation
yields

Λ′
0Σ ′ = −3

8


 r1∑

k=2

x̃′1
2k−1

∂

∂x̃′1
2k−1

+
m∑

j=2

( rj∑
k=1

x̃
′j
2k−1

∂

∂x̃
′j
2k−1

)

+
m∑

j=1

( rj∑
k=1

ỹ
′j
2k−1

∂

∂ỹ
′j
2k−1

)
+ ũ′

1
∂

∂ũ′
1

+ ṽ′
1

∂

∂ṽ′
1




∧ ∂

∂x̃′1
2

+
r1∑
k=2

1

4

∂

∂x̃′1
2k−1

∧ ∂

∂x̃′1
2k

+
m∑

j=2

( rj∑
k=1

1

4

∂

∂x̃
′j
2k−1

∧ ∂

∂x̃
′j
2k

)

−
m∑

j=1

( rj∑
k=1

1

4

∂

∂ỹ
′j
2k−1

∧ ∂

∂ỹ
′j
2k

)
+ 1

4

∂

∂ũ′
1

∧ ∂

∂ũ′
2

− 1

4

∂

∂ṽ′
1

∧ ∂

∂ṽ′
2
, (116)

E′
0Σ ′ = 3

8

∂

∂x̃′1
2

, (117)

N ′
Σ ′ = −(ũ′

2 + ã′)IdΣ ′ − 3

2
T ′
Σ ′ ⊗ dx̃′1

3 + H ′
x̃′Σ ′ − (ṽ′

2 + b̃′)JΣ ′

− (ṽ′
2 + b̃′)

3

2
T ′
Σ ′ ⊗ dỹ′1

1 +
(

3

2
T ′
Σ ′ − Z′

x̃′Σ ′

)
⊗ (dũ′

2 + dṽ′
2) + H ′

ỹ′

−Z′
ỹ′ ⊗ (dũ′

2 − dṽ′
2) + ∂

∂ũ′
1

⊗ (α′
x̃′Σ ′ − α′

ỹ′) + ∂

∂ṽ′
1

⊗ (α′
x̃′Σ ′ + α′

ỹ′), (118)

where−(3/2)T ′
Σ ′ is the projection of(∂/∂x̃′1

1 )|Σ ′ onTΣ ′ in the direction ofT̃ ′,

T ′
Σ ′ =

r1∑
k=2

x̃′1
2k−1

∂

∂x̃′1
2k−1

+
m∑

j=2

( rj∑
k=1

x̃
′j
2k−1

∂

∂x̃
′j
2k−1

)
+

m∑
j=1

( rj∑
k=1

ỹ
′j
2k−1

∂

∂ỹ
′j
2k−1

)

+ ũ′
1

∂

∂ũ′
1

+ ṽ′
1

∂

∂ṽ′
1
,
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JΣ ′ =
2r1∑
l=2

(
∂

∂ỹ′1
l

⊗ dx̃′1
l − ∂

∂x̃′1
l

⊗ dỹ′1
l

)
+

m∑
j=2

2rj∑
l=1

(
∂

∂ỹ
′j
l

⊗ dx̃
′j
l − ∂

∂x̃
′j
l

⊗ dỹ
′j
l

)

− ∂

∂ũ′
1

⊗ dṽ′
1 − ∂

∂ũ′
2

⊗ dṽ′
2 + ∂

∂ṽ′
1

⊗ dũ′
1 + ∂

∂ṽ′
2

⊗ dũ′
2,

the tensor fieldsH ′
x̃′Σ ′ , α′

x̃′Σ ′ , Z′
x̃′Σ ′ have, respectively, the expressions(105)–(107), and

H ′
ỹ′ , α′

ỹ′ , Z′
ỹ′ those that appear inTheorem 3.2,

Y ′
Σ ′ =

r1−1∑
k=2

[
x̃′1

2k+1 + (ṽ′
2 + b̃′)ỹ′1

2k−1 − 3

2
(x̃′1

3 + (ṽ′
2 + b̃′)ỹ′1

1 )x̃′1
2k−1

]
∂

∂x̃′1
2k−1

+
m∑

j=2

rj−1∑
k=1

[
x̃

′j
2k+1 + (ṽ′

2 + b̃′)ỹ′j
2k−1 − 3

2
(x̃′1

3 + (ṽ′
2 + b̃′)ỹ′1

1 )x̃
′j
2k−1

]
∂

∂x̃
′j
2k−1

+
m∑

j=1

[
(ṽ′

2 + b̃′)ỹ′j
2rj−1 − 3

2
(x̃′1

3 + (ṽ′
2 + b̃′)ỹ′1

1 )x̃
′j
2rj−1

]
∂

∂x̃
′j
2rj−1

+
[
−2

3
(ṽ′

2 + b̃′) + ỹ′1
3 − 3

2
(x̃′1

3 + (ṽ′
2 + b̃′)ỹ′1

1 )ỹ′1
1

]
∂

∂ỹ′1
1

+
r1−1∑
k=2

[
−(ṽ′

2 + b̃′)x̃′1
2k−1 + ỹ′1

2k+1 − 3

2
(x̃′1

3 + (ṽ′
2 + b̃′)ỹ′1

1 )ỹ′1
2k−1

]
∂

∂ỹ′1
2k−1

+
m∑

j=2

rj−1∑
k=1

[
−(ṽ′

2 + b̃′)x̃′j
2k−1 + ỹ

′j
2k+1 − 3

2
(x̃′1

3 + (ṽ′
2 + b̃′)ỹ′1

1 )ỹ
′j
2k−1

]
∂

∂ỹ
′j
2k−1

+
m∑

j=1

[
−(ṽ′

2 + b̃′)x̃′j
2rj−1 − 3

2
(x̃′1

3 + (ṽ′
2 + b̃′)ỹ′1

1 )ỹ
′j
2rj−1

]
∂

∂ỹ
′j
2rj−1

+

1

3
x̃′1

2 +
r1∑
k=2

(
k − 1

2

)
x̃′1

2k−1x̃
′1
2k +

m∑
j=2

rj∑
k=1

(
k − 1

2

)
x̃

′j
2k−1x̃

′j
2k

−
m∑

j=1

rj∑
k=1

(
k − 1

2

)
ỹ

′j
2k−1ỹ

′j
2k + ṽ′

1(ṽ
′
2 + b̃′) − 3

2
(x̃′1

3 + (ṽ′
2 + b̃′)ỹ′1

1 )ũ′
1


 ∂

∂ũ′
1

+

1

3
x̃′1

2 +
r1∑
k=2

(
k − 1

2

)
x̃′1

2k−1x̃
′1
2k +

m∑
j=2

rj∑
k=1

(
k − 1

2

)
x̃

′j
2k−1x̃

′j
2k

+
m∑

j=1

rj∑
k=1

(
k − 1

2

)
ỹ

′j
2k−1ỹ

′j
2k − ũ′

1(ṽ
′
2 + b̃′) − 3

2
(x̃′1

3 + (ṽ′
2 + b̃′)ỹ′1

1 )ṽ′
1


 ∂

∂ṽ′
1
,

(119)
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γ ′
Σ ′ = 3

2(dx̃
′1
3 + (ṽ′

2 + b̃′)dỹ′1
1 − dũ′

2 − dṽ′
2), (120)

g′
Σ ′ = −(ũ′

2 + ã′) + 3
2(x̃

′1
3 + (ṽ′

2 + b̃′)ỹ′1
1 ). (121)

Afterwards, we consider a local coordinate systemx̃′′ of M̃ ′′, centered at̃p′′, in which
(Λ̃′′

0, Ñ
′′, T̃ ′′) has the expression of its model (seeTheorem 3.3), and also the product

system((x̃
′j
l ), ũ′

1, ũ
′
2, (ỹ

′j
l ), ṽ′

1, ṽ
′
2; x̃′′), j = 1, . . . , m, l = 1, . . . ,2rj , r1 ≥ · · · ≥ rm,

of M̃ = M̃ ′ × M̃ ′′, centered at̃p = (p̃′, p̃′′). Moreover, we take the submanifoldΣ =
Σ ′ × M̃ ′′ of M̃ = M̃ ′ × M̃ ′′ of codimension 1, transverse tõT ′ + T̃ ′′, defined, of course, by
x̃′1

1 = 0.
Let ((Λ0Σ,E0Σ),NΣ), NΣ := (NΣ, YΣ, γΣ, gΣ), be the Jacobi–Nijenhuis structure

induced onΣ = Σ ′ × M̃ ′′ by the homogeneous symplectic Poisson–Nijenhuis product
structure(Λ̃0, Ñ, T̃ ) = (Λ̃′

0, Ñ
′, T̃ ′) + (Λ̃′′

0, Ñ
′′, T̃ ′′) of M̃ = M̃ ′ × M̃ ′′, (cf. Proposi-

tions 2.12 and 2.14). FromProposition 2.14we deduce the expressions of the tensor fields
of (Λ0Σ,E0Σ) and ofNΣ := (NΣ, YΣ, γΣ, gΣ) that are represented, respectively, by
formulæ(111) and(112)–(115). Then, taking into account the already established local
expressions of(Λ′

0Σ ′ , E′
0Σ ′) and ofN′

Σ ′ := (N ′
Σ ′ , Y ′

Σ ′ , γ ′
Σ ′ , g′

Σ ′) in the coordinates ofΣ ′

(see relations(116)–(121)), and also the local expressions of(Λ̃′′
0, Ñ

′′, T̃ ′′) in the considered
coordinate system̃x′′ of M̃ ′′ (cf. Theorem 3.3), from Eqs. (111)–(115)we may deduce the
local expressions of(Λ0Σ,E0Σ)and ofNΣ := (NΣ, YΣ, γΣ, gΣ) in the coordinate product
system(x̃′1

2 , . . . , x̃′m
2rm

, ũ′
1, ũ

′
2, ỹ

′1
1 , . . . , ỹ′m

2rm
, ṽ′

1, ṽ
′
2; x̃′′) of Σ = Σ ′ × M̃ ′′.

In conclusion, we present the following theorem.

Theorem 4.1. Let ((Λ0, E0),N ), N := (N, Y, γ, g), be a transitive Jacobi–Nijenhuis
structure defined on a(2n + 1)-dimensional differentiable manifoldM, (Λ̃0, Ñ, T̃ ) the
associated homogeneous symplectic Poisson–Nijenhuis structure onM̃ = M ×R, andp a
generic point ofM, viewed as the projection onM of a regular pointp̃ of M̃ with respect to
Ñ . Also, let (M̃ ′, Λ̃′

0, Ñ
′, T̃ ′) be a factor of the “model decomposition” of(M̃, Λ̃0, Ñ, T̃ )

whose homothety vector field̃T ′ is supposed to be transverse toM at p, Σ a subman-
ifold of M̃ through p̃ of codimension 1 and transverse tõT , and ((Λ0Σ,E0Σ),NΣ),
NΣ := (NΣ, YΣ, γΣ, gΣ), the Jacobi–Nijenhuis structure induced onΣ by (Λ̃0, Ñ, T̃ ).
If the characteristic polynomial of̃N ′ is of the typeP

Ñ ′(λ) = (λ + f )2q (respectively
P
Ñ ′(λ) = (λ2 + f λ + h)q , with f 2 − 4h locally strictly negative), q ≤ n + 1, then,

there exists a neighbourhood ofp̃ in Σ with a coordinates system, centered atp, in which
the tensor fields of(Λ0Σ,E0Σ) and ofNΣ := (NΣ, YΣ, γΣ, gΣ) are written, respec-
tively, as Eqs. (111)and (112)–(115), taking into account formulæ (101)–(110) (respec-
tively (116)–(121)). The structure((Λ0Σ,E0Σ),NΣ) is locally equivalent to a conformal
structure to((Λ0, E0),N ).

4.2. Local models of even-dimensional Jacobi–Nijenhuis manifolds

Let ((Λ0, E0),N ), N := (N, Y, γ, g), be a Jacobi–Nijenhuis structure defined on a
2n-dimensional differentiable manifoldM and (Λ̃0, Ñ, T̃ ) the associated homogeneous
Poisson–Nijenhuis structure defined onM̃ = M × R (cf. Proposition 2.16). We assume



362 F. Petalidou, J.M. Nunes da Costa / Journal of Geometry and Physics 45 (2003) 323–367

that the PoissonizatioñΛ0 = e−t (Λ0 + (∂/∂t) ∧ E0) (t is the canonical coordinate on
the factorR) of (Λ0, E0) is of maximum rank on an open dense subset ofM̃ = M × R.
Let p be a generic point ofM, i.e.p can be viewed as the projection onM of a regular
point p̃ of M̃, with respect toÑ = N + Y ⊗ dt + (∂/∂t) ⊗ γ + g(∂/∂t) ⊗ dt, such that
corankΛ̃0(p̃) = 1. Our aim is to construct a model of((Λ0, E0),N ) on a neighbourhood
of p. We remark that the characteristic leafC0 of (Λ0, E0) throughp is the projection on
M, parallel to the integral curves of̃T = (∂/∂t), of the symplectic leaf̃S0 of Λ̃0 throughp̃
(seeSection 2.2); of course, dimS̃0 = 2n. Then,

• if T̃ = (∂/∂t) is tangent tõS0,C0 has dimension 2n−1, and we have that rankΛ0(p) =
2n − 2 andE0(p) /∈ IΛ#

0(p);
• if T̃ = (∂/∂t) is not tangent tõS0, C0 has dimension 2n, i.e. dimC0 = dimM, conse-

quently rankΛ0(p) = 2nandE0(p) ∈ IΛ#
0(p), and the restriction tõS0 of the projection

of M̃ onM parallel to the integral curves of̃T = (∂/∂t) is a local diffeomorphism of̃S0
ontoC0. Then, in this case,(Λ0, E0) is transitive on a neighbourhood ofp in M.

Hence, in order to establish a model of((Λ0, E0),N ) on a neighbourhood ofp, we will
study separately the above mentioned cases.

4.2.1. Study of the case where∂/∂t is tangent toS̃0
In this case, for the construction of a normal form of((Λ0, E0),N )on a neighbourhood of

p, we apply the technique developed in the previous paragraph. FromTheorem 3.4and the
study that follows, on a neighbourhood ofp̃ in M̃, the model of(M̃, Λ̃0, Ñ, T̃ ) is a product
of a homogeneous Poisson–Nijenhuis manifold(M̃ ′, Λ̃′

0, Ñ
′, T̃ ′) of odd dimension 2l − 1,

l ≤ n + 1, whose recursion operator̃N ′ has a characteristic polynomial of typeP
Ñ ′(λ) =

(λ+f )2l−1 and whose homothety vector field̃T ′ is tangent to the symplectic leafS̃′
0 of Λ̃′

0
passing by the projectioñp′ of p̃ onM̃ ′, and a homogeneous symplectic Poisson–Nijenhuis
manifold (M̃ ′′, Λ̃′′

0, Ñ
′′, T̃ ′′). The normal form of(M̃ ′, Λ̃′

0, Ñ
′, T̃ ′) is well described by

Theorem 3.4andEq. (94)and the one of(M̃ ′′, Λ̃′′
0, Ñ

′′, T̃ ′′)byTheorem 3.3. In what follows,
this decomposition of(M̃, Λ̃0, Ñ, T̃ ) will be referred as the“model decomposition”of
(M̃, Λ̃0, Ñ, T̃ ). SinceT̃ = ∂/∂t is supposed to be transverse toM at p, we have that at
least one of its components is transverse toM atp. We distinguish and we treat separately
the following cases:

1. The component of̃T that is transverse toM atp is T̃ ′.
2. The component of̃T that is transverse toM atp is T̃ ′′.

Case 1. We take the factor(M̃ ′, Λ̃′
0, Ñ

′, T̃ ′)of the “model decomposition” of(M̃, Λ̃0, Ñ, T̃ )

that possesses the properties stated above and whose homothety vector fieldT̃ ′ is supposed
to be transverse toM atp. We assume thatdf(p̃′) �= 0, and we consider a local coordinate
system((x̃′i

j ), ỹ
′), i = 1, . . . , m, j = 1, . . . ,2ri , r1 ≥ · · · ≥ rm, of M̃ ′, whereỹ′ = f − ã′,

ã′ = f (p̃′), centered at̃p′, in which the tensor fields̃Λ′
0, Ñ ′ andT̃ ′ are written, respectively,

as their models(78), (79) and (94). For the role of an one-codimensional submanifold of
M̃ ′ transverse tõT ′, we take the hypersurfaceΣ ′ of M̃ ′ defined by the equatioñx′1

1 = 0;
of coursep̃′ ∈ Σ ′. A functiona defined on a well chosen tubular neighbourhoodŨ ′ of Σ ′
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in M̃ ′, which never vanishes oñU ′, equal to 1 onΣ ′ and homogeneous of degree 1 with
respect toT̃ ′, is the function

a((x̃′i
j ), ỹ

′) = 3
2 x̃

′1
1 + 1.

Let ((Λ′
0Σ ′ , E′

0Σ ′),N
′
Σ ′),N′

Σ ′ := (N ′
Σ ′ , Y ′

Σ ′ , γ ′
Σ ′ , g′

Σ ′), be the Jacobi–Nijenhuis structure

induced onΣ ′ by the homogeneous Poisson–Nijenhuis structure(Λ̃′
0, Ñ

′, T̃ ′) of M̃ ′ (cf.
Proposition 2.12). Developing the same reasoning as in Section 4.1, we obtain

Λ′
0Σ ′ = −3

2

[
r1∑
k=2

x̃′1
2k−1

∂

∂x̃′1
2k−1

+
m∑
i=2

(
ri∑

k=1

x̃′i
2k−1

∂

∂x̃′i
2k−1

)]

∧ ∂

∂x̃′1
2

+
r1∑
k=2

∂

∂x̃′1
2k−1

∧ ∂

∂x̃′1
2k

+
m∑
i=2

(
ri∑

k=1

∂

∂x̃′i
2k−1

∧ ∂

∂x̃′i
2k

)
, (122)

E′
0Σ ′ = 3

2

∂

∂x̃′1
2

, (123)

N ′
Σ ′ = −(ỹ′ + ã′)IdΣ ′ − 3

2
T ′
Σ ′ ⊗ dx̃′1

3 + H ′
Σ ′ +

(
3

2
T ′
Σ ′ − Z′

Σ ′

)
⊗ dỹ′, (124)

where−(3/2)T ′
Σ ′ is the projection of∂/∂x̃′1

1 |Σ ′ onTΣ ′ parallel toT̃ ′,

T ′
Σ ′ =

r1∑
k=2

x̃′1
2k−1

∂

∂x̃′1
2k−1

+
m∑
i=2

(
ri∑

k=1

x̃′i
2k−1

∂

∂x̃′i
2k−1

)
,

andH ′
Σ ′ , Z′

Σ ′ are given, respectively, byEqs. (105) and (107),

Y ′
Σ ′ =

r1−1∑
k=2

(x̃′1
2k+1 − 3

2
x̃′1

3 x̃′1
2k−1)

∂

∂x̃′1
2k−1

− 3

2
x̃′1

3 x̃′1
2r1−1

∂

∂x̃′1
2r1−1

+
m∑
i=2


ri−1∑

k=1

(x̃′i
2k+1 − 3

2
x̃′1

3 x̃′i
2k−1)

∂

∂x̃′i
2k−1


−

m∑
i=2

3

2
x̃′1

3 x̃′i
2ri−1

∂

∂x̃′i
2ri−1

, (125)

γ ′
Σ ′ = 3

2(dx̃
′1
3 − dỹ′), (126)

g′
Σ ′ = −(ỹ′ + ã′) + 3

2 x̃
′1
3 . (127)

(If df(p̃′) = 0, the obtained local expressions of the tensor fields of the structure((Λ′
0Σ ′ ,

E′
0Σ ′),N

′
Σ ′) do not include thẽx′m

2rm
andỹ′ coordinates.)

Now, we consider a local coordinate systemx̃′′ of M̃ ′′, centered at̃p′′ (we denote byp̃′′
the projection ofp̃ onM̃ ′′), in which(Λ̃′′

0, Ñ
′′, T̃ ′′) has the expression of its model presented

by Theorem 3.3, and also the product system((x̃′i
j ), ỹ

′; x̃′′), i = 1, . . . , m, j = 1, . . . ,2ri ,

r1 ≥ · · · ≥ rm, of M̃ = M̃ ′×M̃ ′′, whereỹ′ = f − ã′, ã′ = f (p̃′), centered at̃p = (p̃′, p̃′′).
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Moreover, we consider the hypersurfaceΣ = Σ ′ × M̃ ′′ of M̃ = M̃ ′ × M̃ ′′ defined by the
equationx̃′1

1 = 0. Of course, it is an one-codimensional submanifold ofM̃ = M̃ ′ × M̃ ′,
passing byp̃, transverse to the homothety vector fieldT̃ ′ + T̃ ′′.

Let ((Λ0Σ,E0Σ),NΣ), NΣ := (NΣ, YΣ, γΣ, gΣ), be the Jacobi–Nijenhuis structure
induced onΣ = Σ ′ × M̃ ′′ by the homogeneous Poisson–Nijenhuis product structure
(Λ̃0, Ñ, T̃ ) = (Λ̃′

0, Ñ
′, T̃ ′) + (Λ̃′′

0, Ñ
′′, T̃ ′′) of M̃ = M̃ ′ × M̃ ′′, (cf. Propositions 2.12 and

2.14). FromProposition 2.14, we deduce the expressions(111)–(115)of the tensor fields
of ((Λ0Σ,E0Σ),NΣ). Since we know the local models of((Λ′

0Σ ′ , E′
0Σ ′),N

′
Σ ′), N′

Σ ′ :=
(N ′

Σ ′ , Y ′
Σ ′ , γ ′

Σ ′ , g′
Σ ′), in the coordinates(x̃′1

2 , . . . , x̃′m
2rm

, ỹ′)ofΣ ′ (cf. relations(122)–(127)),

and of (Λ̃′′
0, Ñ

′′, T̃ ′′) in the considered coordinate systemx̃′′ of M̃ ′′ (cf. Theorem 3.3),
(111)–(115)give us the local writing of((Λ0Σ,E0Σ),NΣ),NΣ := (NΣ, YΣ, γΣ, gΣ), in
the local coordinate product system(x̃′1

2 , . . . , x̃′m
2rm

, ỹ′; x̃′′) of Σ = Σ ′ × M̃ ′′.
Then, we are lead to the following theorem.

Theorem 4.2. Let ((Λ0, E0),N ), N := (N, Y, γ, g), be a Jacobi–Nijenhuis structure
defined on a 2n-dimensional differentiable manifoldM and(Λ̃0, Ñ, T̃ ) the associated ho-
mogeneous Poisson–Nijenhuis structure onM̃ = M × R. Suppose that(Λ0, E0) is such
that its PoissonizationΛ̃0 is of maximum rank on an open dense subset ofM̃ = M × R.
Let p be a generic point ofM, viewed as the projection onM of a regular pointp̃ ∈
M̃, with respect toÑ , such that corankΛ̃0(p̃) = 1, and let S̃0 be the symplectic leaf
ofΛ̃0 through p̃. Also let (M̃ ′, Λ̃′

0, Ñ
′, T̃ ′) be the odd-dimensional factor of the “model

decomposition” of(M̃, Λ̃0, Ñ, T̃ ) whose homothety vector field̃T ′ is assumed to be trans-
verse toM at p, Σ an one-codimensional submanifold ofM̃, passing byp̃, transverse
to T̃ , and ((Λ0Σ,E0Σ),NΣ), NΣ := (NΣ, YΣ, γΣ, gΣ), the Jacobi–Nijenhuis structure
induced onΣ by (Λ̃0, Ñ, T̃ ). If T̃ is tangent toS̃0, then, there exists a neighbourhood ofp̃

in Σ with a system of coordinates, centered atp̃, in which the tensor fields of(Λ0Σ,E0Σ)

and ofNΣ := (NΣ, YΣ, γΣ, gΣ) are written, respectively, asEqs. (111)and(112)–(115)
(taking into account(122)–(127)). The structure((Λ0Σ,E0Σ),NΣ) is locally equivalent
to a conformal structure to((Λ0, E0),N ).

Case 2. Take the factor(M̃ ′′, Λ̃′′
0, Ñ

′′, T̃ ′′)of the “model decomposition” of(M̃, Λ̃0, Ñ, T̃ )

which is a homogeneous symplectic Poisson–Nijenhuis manifold whose homothety vector
field T̃ ′′ is supposed to be transverse toM atp. Let p̃′′ be the projection of̃p onM̃ ′′. From
Theorem 3.3, on a neighbourhood of̃p′′ in M̃ ′′, (M̃ ′′, Λ̃′′

0, Ñ
′′, T̃ ′′) is identified with a finite

product of homogenous symplectic Poisson–Nijenhuis manifolds whose recursion operator
has a characteristic polynomial that is a power of an irreducible polynomial. SinceT̃ ′′ is
transverse toM at p, at least one of its components, in the considered decomposition, is
transverse toM atp.

Let Σ ′′ be a submanifold ofM̃ ′′ of codimension 1, passing bỹp′′ and transverse tõT ′′,
and((Λ′′

0Σ ′′ , E′′
0Σ ′′),N

′′
Σ ′′),N′′

Σ ′′ := (N ′′
Σ ′′ , Y ′′

Σ ′′ , γ ′′
Σ ′′ , g′′

Σ ′′), the Jacobi–Nijenhuis structure

induced onΣ ′′ by the homogeneous symplectic Poisson–Nijenhuis structure(Λ̃′′
0, Ñ

′′, T̃ ′′)
of M̃ ′′ (cf. Proposition 2.12). The local model of((Λ′′

0Σ ′′ , E′′
0Σ ′′),N

′′
Σ ′′) is well known from

Theorem 4.1.
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Now, we consider the submanifoldΣ = M̃ ′ × Σ ′′ of M̃ = M̃ ′ × M̃ ′′, which is, of
course, one-codimensional and transverse toT̃ ′ + T̃ ′′. Let ((Λ0Σ,E0Σ),NΣ), NΣ :=
(NΣ, YΣ, γΣ, gΣ), be the Jacobi–Nijenhuis structure induced onΣ = M̃ ′ ×Σ ′′ by the ho-
mogeneous Poisson–Nijenhuis product structure(Λ̃0, Ñ, T̃ ) = (Λ̃′

0, Ñ
′, T̃ ′)+(Λ̃′′

0, Ñ
′′, T̃ ′′)

of M̃ = M̃ ′ × M̃ ′′ (cf. Propositions 2.12 and 2.14). FromProposition 2.14,

Λ0Σ = Λ̃′
0 + Λ′′

0Σ ′′ − T̃ ′ ∧ E′′
0Σ ′′ and E0Σ = E′′

0Σ ′′ , (128)

NΣ = Ñ ′ + N ′′
Σ ′′ − T̃ ′ ⊗ γ ′′

Σ ′′ , (129)

YΣ = (Ñ ′ − g′′
Σ ′′ IdT M̃ ′)T̃

′ + Y ′′
Σ ′′ , (130)

γΣ = γ ′′
Σ ′′ , (131)

gΣ = g′′
Σ ′′ . (132)

Then, ifx̃′ is a local coordinate system of̃M ′, centered at̃p′, in which the tensor fields̃Λ′
0, Ñ ′

andT̃ ′ are written, respectively, asEqs. (78), (79) and (94), and if x̃′′
Σ ′′ is a local coordinate

system ofΣ ′′, centered at̃p′′, in which the tensor fields of((Λ′′
0Σ ′′ , E′′

0Σ ′′),N
′′
Σ ′′),N′′

Σ ′′ :=
(N ′′

Σ ′′ , Y ′′
Σ ′′ , γ ′′

Σ ′′ , g′′
Σ ′′), have the expressions of their models (cf.Theorem 4.1), formulæ

(128)–(132)give us the local expression of((Λ0Σ,E0Σ),NΣ),NΣ := (NΣ, YΣ, γΣ, gΣ),
in the local coordinate product system(x̃′; x̃′′

Σ ′′) of Σ = M̃ ′ × Σ ′′.

So, we get the following theorem.

Theorem 4.3. Let ((Λ0, E0),N ), N := (N, Y, γ, g), be a Jacobi–Nijenhuis structure
defined on a 2n-dimensional differentiable manifold M and(Λ̃0, Ñ, T̃ ) the associated ho-
mogeneous Poisson–Nijenhuis structure onM̃ = M × R. Suppose that(Λ0, E0) is such
that its PoissonizatioñΛ0 is of maximum rank on an open dense subset ofM̃ = M ×R. Let
p be a generic point ofM, viewed as the projection onM of a regular pointp̃ ∈ M̃, with
respect toÑ , such thatcorankΛ̃0(p̃) = 1, and letS̃0 be the symplectic leaf of̃Λ0 through
p̃. Also, let (M̃ ′′, Λ̃′′

0, Ñ
′′, T̃ ′′) be the homogeneous symplectic Poisson–Nijenhuis manifold

of the “model decomposition” of(M̃, Λ̃0, Ñ, T̃ ) whose homothety vector field̃T ′′ is sup-
posed to be transverse toM atp,Σ an one-codimensional submanifold ofM̃, passing byp̃,
transverse tõT , and((Λ0Σ,E0Σ),NΣ),NΣ := (NΣ, YΣ, γΣ, gΣ), the Jacobi–Nijenhuis
structure induced onΣ by(Λ̃0, Ñ, T̃ ). If T̃ is tangent toS̃0, then, there exists a neighbour-
hood ofp̃ in Σ with a system of coordinates, centered atp̃, in which the tensor fields of
(Λ0Σ,E0Σ) and ofNΣ := (NΣ, YΣ, γΣ, gΣ) are written, respectively, asEq. (128)and
(129)–(132)(taking into account the model expression of((Λ′′

0Σ ′′ , E′′
0Σ ′′),N

′′
Σ ′′) presented

by Theorem 4.1). The structure((Λ0Σ,E0Σ),NΣ) is locally equivalent to a conformal
structure to((Λ0, E0),N ).

4.2.2. Study of the case where∂/∂t is not tangent tõS0
Consider the same context as in the beginning of Section 4.2 and assume that the ho-

mothety vector fieldT̃ = ∂/∂t of (Λ̃0, Ñ) is not tangent to the symplectic leafS̃0 of Λ̃0
throughp̃. As we have remarked, in this case(Λ0, E0) is transitive on a neighbourhood
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U of p in M. Then, there exists a differentiable functionf ∈ C∞(U,R) that vanishes
nowhere onU such that the Jacobi structure(Λf

0 , E
f

0 ), f -conformal to(Λ0, E0), is a sym-

plectic Poisson structure onU , i.e.Λf

0 = fΛ0 is a nondegenerate Poisson tensor onU and

E
f

0 = Λ#
0(df) + fE0 = 0 (cf. [11,2,9]).

Let ((Λf

0 , E
f

0 ),N
f ), Nf := (Nf , Y f , γ f , gf ), be the Jacobi–Nijenhuis structure,f -

conformal to((Λ0, E0),N ), and(Λf

1 , E
f

1 ) the Jacobi structure,f -conformal to(Λ1, E1),
(Λ1, E1)

# = N ◦ (Λ0, E0)
#. FromProposition 2.11,

(Λ
f

1 , E
f

1 )
# = Nf ◦ (Λ

f

0 , E
f

0 )
#.

Then,

E
f

1 = NfE
f

0 = 0,

(cf. Eq. (29)), which means thatΛf

1 = fΛ1 endowsU with a Poisson structure. Of course,

Λ
f

1 is compatible withΛf

0 . SinceΛf

0 is nondegenerate onU , the pair(Λf

0 ,Λ
f

1 ) possesses
a recursion operator onU that is no other than the tensor field of type (1,1)

Nf = N − Y ⊗ df

f

ofNf := (Nf , Y f , γ f , gf ). Then,(Λf

0 , N
f )defines onU a symplectic Poisson–Nijenhuis

structure.
Of course, the local model of(Λf

0 , N
f ) is known byTheorem 3.3. On the other hand,

since ((Λ
f

0 , E
f

0 ),N
f ), Nf := (Nf , Y f , γ f , gf ), is a Jacobi–Nijenhuis structure (see

Proposition 2.11), its tensor fields verifyEqs. (19)–(22)and(25)–(27). BecauseEf

0 = 0

andΛf

0 is nondegerate onU , from

NfE
f

0 = Λ
f #
0 (γ f ) + gf E

f

0 ,

we get thatγ f = 0 onU . Then (cf.Proposition 2.11),

γ = −tN
df

f
+ gf

df

f
. (133)

Taking into account this result, from

tNf (dgf ) = LYf γ
f + gf dgf ,

we deduce thatgf is a functional proper value ofNf or thatgf is constant onU . So, if s
is a local coordinate system ofM, centered atp, in which(Λ

f

0 , N
f ) has the expression of

its model (cf.Theorem 3.3), then, we can easily deduce from this the local writings ofΛ0,
E0 = −Λ#

0(df/f ), N , Y andg in this system and, fromEq. (133), the one ofγ .
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